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A MONOTONICITY FORMULA AND A LIOUVILLE TYPE

THEOREM OF V -HARMONIC MAPS

Guangwen Zhao

Abstract. We establish a monotonicity formula of V -harmonic maps

by using the stress-energy tensor. Use the monotonicity formula, we can
derive a Liouville type theorem for V -harmonic maps. As applications,

we also obtain monotonicity and constancy of Weyl harmonic maps from
conformal manifolds to Riemannian manifolds and ±holomorphic maps

between almost Hermitian manifolds. Finally, a constant boundary-value

problem of V -harmonic maps is considered.

1. Introduction

Let (M, g) and (N,h) be two Riemannian manifolds. Given a smooth vector
field V on M . A smooth map u : M → N is called V -harmonic map if it
satisfies

τ(u) + du(V ) = 0,(1)

where τ(u) = trg∇du is the tension field of the map u.
The notion of V -harmonic maps was introduced by Chen–Jost–Wang [5],

which includes the Hermitian harmonic maps from Hermitian manifolds to
Riemannian manifolds [15], the Weyl harmonic maps from conformal Weyl
manifolds to Riemannian manifolds [17], the affine harmonic maps from affine
manifolds to Riemannian manifolds [14], and the Finsler harmonic maps from
Finsler manifolds to Riemannian manifolds [2].

Chen–Jost–Wang [5] proved the global existence and convergence of the
V -harmonic map heat flow from compact manifolds into regular balls. Chen–
Jost–Qiu [4] established existence and uniqueness of V -harmonic maps from
complete noncompact manifolds. They also obtained a Liouville type theorem
for V -harmonic maps. Based on the observation that Gauss maps of the self-
shrinker and translating soliton are both some V -harmonic maps, Chen–Qiu
[6] proved that there exists no non-trivial complete m-dimensional spacelike
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self-shrinker and m-dimensional translating soliton in Rm+n
n by using a Omori–

Yau maximal principle. Recently, Qiu [20] established gradient estimates for
V -harmonic map heat flow from complete noncompact manifolds into regular
balls. He also derived a Liouville type theorem for V -harmonic maps, which
improved the corresponding result of [4].

In this paper, we obtain a monotonicity formula and a Liouville type the-
orem of V -harmonic maps by using stress-energy tensor. We deal with the
domain manifolds are complete Riemannian manifolds with a pole. We firstly
establish a monotonicity formula of V -harmonic maps. Furthermore, we obtain
a Liouville type theorem in certain conditions of energy of the map. We apply
these results to obtain monotonicity and constancy of Weyl harmonic maps
from conformal manifolds to Riemannian manifolds. On the other hand, by
computation, we know that any holomorphic or anti-holomorphic map from al-
most Hermitian manifolds to quasi-Kähler manifolds must be V -harmonic map.
Therefore, we obtain corresponding results in these cases. Finally, we consider
a constant boundary-value problem of V -harmonic maps. We will deal with the
case that the domain is bounded starlike. For classical and other class harmonic
maps, the above corresponding work can be found in [3, 7, 9, 10,16,18,19,21].

For convenience, throughout this paper, we denote by∇ the Levi-Civita con-
nections of all manifolds and the induced connections derived from Levi-Civita
connections, and by 〈?, ?〉 the inner products on all manifolds and bundles.

2. The stress-energy tensor

Let u : (M, g) → (N,h) be a smooth map between Riemannian manifolds,
we can define the energy density e(u) = 1

2 |du|
2, and the energy functional

E(u) =
∫
M
e(u). In [1] Baird and Eells introduced the stress-energy tensor Su

associated with E(u) as follows:

Su = e(u)g − u∗h = e(u)g − du� du,(2)

where du� du ∈ Γ(T ∗M ⊗ T ∗M) is a symmetric tensor defined by

(du� du)(X,Y ) = 〈du(X), du(Y )〉.
For a 2-tensor field S ∈ Γ(T ∗M ⊗ T ∗M), its divergence divS ∈ Γ(T ∗M) is

defined by

(divS)(X) =
∑
i

(∇eiS)(ei, X),∀X ∈ Γ(TM),(3)

where {ei} is an orthonormal basis with respect to g. A direct computation
yields:

Lemma 2.1 (see [1,22]). For a smooth map u : M → N , we have (divSu)(X) =
−〈du(X), τ(u)〉.

For a vector field X ∈ Γ(TM), we denote by X[ its dual 1-form, that is,

X[(Y ) = 〈X,Y 〉, ∀Y ∈ Γ(TM).
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The covariant derivative of X[ gives a 2-tensor field ∇X[:

(∇X[)(Y, Z) = (∇ZX[)(Y ) = 〈∇ZX,Y 〉, ∀Y,Z ∈ Γ(TM).

If X = ∇ψ is the gradient of some smooth function ψ on M , then X[ = dψ
and ∇X[ = Hess(ψ).

For any vector field X ∈ Γ(TM), a direct computation yields (see [7]):

div(iXSu) = 〈Su,∇X[〉+ (divSu)(X).

By the above equation and divergence theorem, we immediately have the fol-
lowing integral formula:

Lemma 2.2 (see [7, 22]). Let D be any bounded domain of M with smooth
boundary, X ∈ Γ(TM). Then we have∫

∂D

Su(X, ν)dv∂D =

∫
D

{〈Su,∇X[〉+ (divSu)(X)}dvg,(4)

where ν is the unit outward normal vector field along ∂D.

3. Monotonicity formulas and Liouville type theorems

In this section, we will establish a monotonicity formula and a Liouville
type theorem of V -harmonic maps from complete Riemannian manifolds with
a pole. Recall a pole is a point x0 ∈ M such that the exponential map from
the tangent space of x0 into M is a diffeomorphism. We use r(x) = dist(x0, x)
to represent the distance function relative to the pole x0. We denote by Kr the
radial curvature, that is, the restriction of the sectional curvature function to
all the planes which contain the unit radial vector ∂

∂r . We need the following
comparison theorem:

Lemma 3.1 (see [7, 12, 13]). Let (M, g) be a complete Riemannian manifold
with a pole x0.

i) If −α2 ≤ Kr ≤ −β2 with α > 0, β > 0, then

β coth(βr)[g − dr ⊗ dr] ≤ Hess(r) ≤ α coth(αr)[g − dr ⊗ dr].

ii) If − A
(1+r2)1+ε ≤ Kr ≤ B

(1+r2)1+ε with ε > 0, A ≥ 0 and 0 ≤ B < 2ε, then

1− B
2ε

r
[g − dr ⊗ dr] ≤ Hess(r) ≤ e

A
2ε

r
[g − dr ⊗ dr].

iii) If − a2

c2+r2 ≤ Kr ≤ b2

c2+r2 with a2 ≥ 0, 0 ≤ b2 ≤ 1
4 and c2 ≥ 0, then

1 +
√

1− 4b2

2r
[g − dr ⊗ dr] ≤ Hess(r) ≤ 1 +

√
1 + 4a2

2r
[g − dr ⊗ dr].

Use the above lemma, we can establish a monotonicity formula for V -
harmonic maps from complete manifolds with a pole.
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Theorem 3.2. Let (Mm, g) be a complete Riemannian manifold with a pole
x0, V ∈ Γ(TM). Let (Nn, h) be a Riemannian manifold. Assume that the
radial curvature Kr of M satisfies one of the following three conditions:

i) −α2 ≤ Kr ≤ −β2 with α > 0, β > 0 and α ≤ m−1
2 β;

ii) − A
(1+r2)1+ε ≤ Kr ≤ B

(1+r2)1+ε with ε > 0, A ≥ 0, 0 ≤ B < 2ε and

e
A
2ε < m

2 − (m− 1) B4ε ;

iii) − a2

c2+r2 ≤ Kr ≤ b2

c2+r2 with a2 ≥ 0, 0 ≤ b2 ≤ 1
4 , c2 ≥ 0 and

√
1 + 4a2 <

m−1
2 (1 +

√
1− 4b2).

Let u : M → N be a V -harmonic map. We assume that

|V | ≤ C

2r
,(5)

where C < Λ is a constant, and

(6) Λ =


m− 2α

β , if Kr satisfies i),

m− (m− 1) B2ε − 2e
A
2ε , if Kr satisfies ii),

m−1
2 (1 +

√
1− 4b2)−

√
1 + 4a2, if Kr satisfies iii).

Then we have
1

R1
Λ−C

∫
BR1

(x0)

e(u) ≤ 1

R2
Λ−C

∫
BR2

(x0)

e(u)(7)

for any 0 < R1 ≤ R2.

Proof. We choose D = BR(x0) and X = r ∂∂r , ∂Br(x0) in Lemma 2.2. We know

ν = ∂
∂r is unit outward normal vector field of ∂Br(x0). Therefore, we have∫
∂BR(x0)

Su(X, ν) =

∫
∂BR(x0)

e(u)〈X, ν〉 −
∫
∂BR(x0)

〈du(X), du(ν)〉

=

∫
∂BR(x0)

Re(u)−
∫
∂BR(x0)

R

〈
du

(
∂

∂r

)
, du

(
∂

∂r

)〉
≤ R

∫
∂BR(x0)

e(u).

(8)

By the definition of Su, we have

〈Su,∇X[〉 = 〈e(u)g − u∗h,∇X[〉 = 〈e(u)g − u∗h, 1

2
Hess(r2)〉

= e(u)〈g, dr ⊗ dr + rHess(r)〉 − 〈u∗h, dr ⊗ dr + rHess(r)〉

= e(u)(1 + rHess(r)(ei, ei))−
∣∣∣∣du( ∂

∂r

)∣∣∣∣2
− rHess(r)(ei, ej)〈du(ei), du(ej)〉,

(9)

where {ei; ∂
∂r}

m−1
i=1 = {eα}mα=1 is a local orthonormal frame field on BR(x0).

We consider the case when the radial curvature Kr of M satisfies one of i),
ii) and iii) via Lemma 3.1 and (8). Case i). By the facts βr coth(βr) > 1 for



A MONOTONICITY FORMULA AND A LIOUVILLE TYPE THEOREM 1331

r > 0 and cothx is a decreasing function with respect to x, and the condition
α ≤ m−1

2 β, we have

〈Su,∇X[〉 ≥ e(u)(1 + (m− 1)βr coth(βr))

−
∣∣∣∣du( ∂

∂r

)∣∣∣∣2 − αr coth(αr)〈du(ei), du(ei)〉

=

[
m− 1

2
βr coth(βr)− 1

2

] ∣∣∣∣du( ∂

∂r

)∣∣∣∣2(10)

+

[
1

2
+
m− 1

2
βr coth(βr)− αr coth(αr)

]
〈du(ei), du(ei)〉

= [(m− 1)βr coth(βr)− 1] · 1

2

∣∣∣∣du( ∂

∂r

)∣∣∣∣2
+

[
1 + βr coth(βr)

(
m− 1− αr coth(αr)

βr coth(βr)

)]
· 1

2
〈du(ei), du(ei)〉

≥
(
m− 2α

β

)
e(u).

Case ii). By the fact 1 ≤ e A2ε , we have

〈Su,∇X[〉 ≥ e(u)

(
1 + (m− 1)

(
1− B

2ε

))
−
∣∣∣∣du( ∂

∂r

)∣∣∣∣2 − e A2ε 〈du(ei), du(ei)〉

=

[
m− 1

2

(
1− B

2ε

)
− 1

2

] ∣∣∣∣du( ∂

∂r

)∣∣∣∣2(11)

+

[
1

2
+
m− 1

2

(
1− B

2ε

)
− e A2ε

]
〈du(ei), du(ei)〉

≥
(
m− (m− 1)

B

2ε
− 2e

A
2ε

)
e(u).

Case iii).

〈Su,∇X[〉 ≥ e(u)

(
1 +

m− 1

2
(1 +

√
1− 4b2)

)
−
∣∣∣∣du( ∂

∂r

)∣∣∣∣2 − 1 +
√

1 + 4a2

2
〈du(ei), du(ei)〉

=

[
m− 1

4
(1 +

√
1− 4b2)− 1

2

] ∣∣∣∣du( ∂

∂r

)∣∣∣∣2(12)

+

[
1

2
+
m− 1

4
(1 +

√
1− 4b2)− 1 +

√
1 + 4a2

2

]
〈du(ei), du(ei)〉
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≥
(
m− 1

2
(1 +

√
1− 4b2)−

√
1 + 4a2

)
e(u).

In a word, we have

〈Su,∇X[〉 ≥ Λe(u).(13)

On the other hand, combining Lemma 2.1 with the condition (5), we have

|(divSu)(X)| = |〈−τ(u), du(X)〉|
= |〈du(V ), du(X)〉|
= |〈du(V ), du(X)〉|
≤ |du|2|V ||X|
≤ Ce(u).

(14)

By (4), (8), (13) and (14), we get

R

∫
∂BR(x0)

e(u) ≥ (Λ− C)

∫
BR(x0)

e(u).(15)

By the co-area formula, we have

d

dR

∫
BR(x0)

e(u) =
d

dR

{∫ R

0

(∫
∂Bρ(x0)

e(u)

|∇r|

)
dρ

}

=

∫
∂BR(x0)

e(u)

|∇r|

=

∫
∂BR(x0)

e(u).

(16)

Combining (15) with (16), we get

d

dR

∫
BR(x0)

e(u) ≥ Λ− C
R

∫
BR(x0)

e(u).(17)

It follows that

d

dR

(
1

RΛ−C

∫
BR(x0)

e(u)

)
≥ 0.(18)

The conclusion of this theorem follows immediately from integrating (18) on
[R1, R2]. �

The energy of u is called moderate divergent (see [22, p. 48]) if there exists
a positive function ψ with ∫ ∞

R0

dr

rψ(r)
=∞

for R0 > 0 such that

lim
R→∞

∫
BR(x0)

e(u)(x)

ψ(r(x))
<∞.(19)
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It is easy to see this condition is weaker than the condition that the energy of
u is finite.

From Theorem 3.2, we have the following Liouville type theorem for V -
harmonic maps:

Theorem 3.3. Let (Mm, g) be a complete Riemannian manifold with a pole x0,
V ∈ Γ(TM). Let (Nn, h) be a Riemannian manifold. Assume that the radial
curvature Kr of M satisfies one of the conditions i), ii) and iii) of Theorem 3.2.
Let u : M → N be a V -harmonic map. We assume that

|V | ≤ C

2r
,

where C < Λ is a constant, and Λ as in (6). If the energy of u satisfies∫
BR(x0)

e(u) = o(RΛ−C) as R → ∞, then u is a constant map. In particular,

if the energy of u is finite or moderate divergent, then u is constant.

Proof. We only need prove u is constant if its energy is moderate divergent. By
the same process as in the proof of Theorem 3.2, we have (15). If the energy
density e(u) does not vanish identically, then there exists R0 > 0 such that

R

∫
BR(x0)

e(u) ≥ C ′(20)

for R > R0, where C ′ > 0. Combining (15) with (20), we have∫
∂BR(x0)

e(u) ≥ (Λ− C)C ′

R
.(21)

From (21) we get

lim
R→∞

∫
BR(x0)

e(u)(x)

ψ(r(x))
=

∫ ∞
0

(
1

ψ(R)

∫
∂BR(x0)

e(u)

)
dR

≥ (Λ− C)C ′
∫ ∞

0

dR

Rψ(R)

≥ (Λ− C)C ′
∫ ∞
R0

dR

Rψ(R)
=∞,

(22)

which contradicts (19). Therefore, u has to be a constant map. �

Remark 3.4. a) The assumption |V | ≤ C
2r can be supported by concrete exam-

ples. For instance, we can choose V = C
2
∇r
r+ε for some ε > 0.

b) We explain the rationality of “In particular” in Theorem 3.3, which is
why “the energy of u is moderate divergent” implies “

∫
BR(x0)

e(u) = o(RΛ−C)

as R→∞”.
In fact, if the energy of u diverges moderately, then we have

lim
R→∞

∫
BR(x0)

e(u)(x)

RΛ−C = lim
R→∞

1

RΛ−C

∫
BR(x0)

(
e(u)(x)

ψ(r(x))
· ψ(r(x))

)
.
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Without loss of generality, we assume that ψ is an increasing function. Hence,

lim
R→∞

∫
BR(x0)

e(u)(x)

RΛ−C ≤ lim
R→∞

ψ(R)

RΛ−C

∫
BR(x0)

e(u)(x)

ψ(r(x))

= lim
R→∞

ψ(R)

RΛ−C · lim
R→∞

∫
BR(x0)

e(u)(x)

ψ(r(x))
.

By
∫∞
R0

dr
rψ(r) =∞, we have lim

R→∞
ψ(R)
RΛ−C = 0. It follows (19) that

lim
R→∞

∫
BR(x0)

e(u)(x)

RΛ−C = 0.

Remark 3.5. Qiu proved a Liouville type theorem for V -harmonic maps via
his gradient estimate, see [20, Theorem 2]. He requires that the Bakry-Émery
Ricci curvature

RicV = Ric−1

2
LV g

of the domain manifold to be nonnegative, the sectional curvature of the target
manifold has a positive upper bound, and the image of the map is contained
in a regular sphere of the target manifold. Compared with Qiu’s theorem, we
require that the domain manifold is more special, the curvature condition of the
domain manifold is properly relaxed in a sense, and we must also require that
the length of the vector field V can be controlled properly. But we don’t need
to make any assumptions about the target manifold and the value distribution
of the map.

4. Applications

In this section, we will apply Theorem 3.2 to the following two classes of
map: 1) Weyl harmonic maps from conformal Weyl manifolds to Riemannian
manifolds; 2) Holomorphic maps between almost Hermitian manifolds. We
assume that dimRM > 2 in this section.

4.1. Weyl harmonic maps

Now we consider Weyl harmonic maps from conformal Weyl manifolds to
Riemannian manifolds. Firstly, Recall the related facts briefly as follows (see
[17, Section 2]).

A so-called Weyl structure on a conformal manifold (M, c) is a torsion-free
linear connection ∇W preserving the conformal structure c. For any Riemann-
ian metric g ∈ c, the Weyl connection ∇W can be defined by

∇WX Y =∇XY −
1

2
Θ(X)Y − 1

2
Θ(Y )X+

1

2
g(X,Y )Θ] for X,Y ∈ Γ(TM),(23)

where Θ is a 1-form, ] maps Θ to its dual vector field (with respect to g), and
∇ is the Levi-Civita connection with respect to g. Θ is called the Higgs field,
and we have ∇W g = Θ⊗ g.
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Let (N,h) be a Riemannian manifold. A smooth map u : (M, c,∇W ) →
(N,h) is called Weyl harmonic if it satisfies τW (u) = τ(g,∇W ,∇) = 0. We
know also

τW (u) = τ(u)−
(
m− 2

2

)
du(Θ]).(24)

From (24) we know that Weyl harmonic maps are V -harmonic, where V =
−
(
m−2

2

)
Θ]. It follows Theorem 3.2 and Theorem 3.3 that:

Theorem 4.1. Let (Mm, c,∇W ) be a complete conformal Weyl manifold,
which is endowed with a Gauduchon metric g ∈ c and denote by Θ its Higgs
field. Suppose that M possess a pole x0 and the radial curvature Kr satisfies
one of the following three conditions:

i) −α2 ≤ Kr ≤ −β2 with α > 0, β > 0 and α ≤ m−1
2 β;

ii) − A
(1+r2)1+ε ≤ Kr ≤ B

(1+r2)1+ε with ε > 0, A ≥ 0, 0 ≤ B < 2ε and

e
A
2ε < m

2 − (m− 1) B4ε ;

iii) − a2

c2+r2 ≤ Kr ≤ b2

c2+r2 with a2 ≥ 0, 0 ≤ b2 ≤ 1
4 , c2 ≥ 0 and

√
1 + 4a2 <

m−1
2 (1 +

√
1− 4b2).

Let (Nn, h) be a Riemannian manifold and u : M → N be a Weyl harmonic
map with

|Θ| ≤ C

(m− 2)r
,(25)

where C < Λ is a constant, and Λ as in (6). Then we have (7) holds for any
0 < R1 ≤ R2. Furthermore, if the energy of u satisfies

∫
BR(x0)

e(u) = o(RΛ−C),

then u is a constant map. In particular, if the energy of u is finite or moderate
divergent, then u is constant.

4.2. Holomorphic maps

We know that a holomorphic map between almost Hermitian manifolds is
not necessarily harmonic. But we will see that holomorphic maps will satisfy
V -harmonicity in special cases. To illustrate the things, recall the definition of
quasi-Kähler manifold as follows:

Definition (see [11]). An almost Hermitian manifold (M, g, J) is called a quasi-
Kähler manifold if (∇XJ)Y + (∇JXJ)JY = 0 for all X,Y ∈ Γ(TM), where δ
is the co-differential operator with respect to g.

Let (M2m, g, J) and (N2n, h, J ′) be two almost Hermitian manifolds with
dimension 2m and 2n, respectively. We say a smooth map u : M → N a
holomorphic (anti-holomorphic) map if it satisfies

du ◦ J = J ′ ◦ du (du ◦ J = −J ′ ◦ du).(26)
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Let u : (M2m, g, J) → (N2n, h, J ′) be a holomorphic or anti-holomorphic
map. By a direct computation, we can obtain

(∇Xdu)(Y ) + (∇JXdu)(JY ) = du((∇Y J)JX − (∇JXJ)Y )

+ J ′(∇JXJ ′)(du(JY )) + J ′(∇Y J ′)(du(X)),(27)

where X,Y ∈ Γ(TM).
Let {eA}2mA=1 = {ei; Jei}mi=1 be a local orthonormal frame field with respect

to g. Choosing X = Y = ei and summing up the indices i = 1, . . . ,m in (24),
we have immediately the following proposition:

Proposition 4.2. Let u : (M2m, g, J) → (N2n, h, J ′) be a holomorphic or
anti-holomorphic map between almost Hermitian manifolds. Then we have

τ(u)− du(JδJ) = trgJ
′(∇du(?)J

′)(du(?)).

In particular, if N is a quasi-Kähler manifold, then u is V -harmonic, where
V = −JδJ .

By Theorem 3.2, Theorem 3.3 and Proposition 4.2, we have:

Theorem 4.3. Let (M2m, g, J) be a complete almost Hermitian manifold with
a pole x0. Let (N2n, h, J ′) be a quasi-Kähler manifold. Assume that the radial
curvature Kr of M satisfies one of the following three conditions:

i) −α2 ≤ Kr ≤ −β2 with α > 0, β > 0 and α ≤ m−1
2 β;

ii) − A
(1+r2)1+ε ≤ Kr ≤ B

(1+r2)1+ε with ε > 0, A ≥ 0, 0 ≤ B < 2ε and

e
A
2ε < m

2 − (m− 1) B4ε ;

iii) − a2

c2+r2 ≤ Kr ≤ b2

c2+r2 with a2 ≥ 0, 0 ≤ b2 ≤ 1
4 , c2 ≥ 0 and

√
1 + 4a2 <

m−1
2 (1 +

√
1− 4b2).

Let u : M → N be a holomorphic or anti-holomorphic map, and

|δJ | ≤ C

2r
,(28)

where C < Λ is a constant, and Λ as in (6). Then we have (7) holds for any
0 < R1 ≤ R2. Furthermore, if the energy of u satisfies

∫
BR(x0)

e(u) = o(RΛ−C),

then u is a constant map. In particular, if the energy of u is finite or moderate
divergent, then u is constant.

Similarly, we can consider holomorphic maps from locally conformal Kähler
(l.c.K.) manifolds to quasi-Kähler manifolds, which are actually special cases of
holomorphic maps from almost Hermitian manifolds to quasi-Kähler manifolds.
We will find that this is similar to the previous case of Weyl harmonic map.
Now recall the definition of l.c.K. manifold:

Definition (see [8]). A Hermitian manifold (M2m, g, J) is called a l.c.K. man-
ifold if there is an open cover {Ui} of M and a family {fi} of smooth functions
fi : Ui → R so that each local metric

gi = e−fig|Ui(29)
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is a Kähler metric, where g|Ui = ι∗i g, ιi : Ui →M is the inclusion.

Let ωi and ω be the fundamental (1, 1)-forms of (gi, J) and (g, J), respec-
tively. That is, ωi(?, ?) = gi(J?, ?), ω(?, ?) = g(J?, ?). Then (29) yields

ωi = e−fiω|Ui .(30)

[8, Theorem 1.1] says that a Hermitian manifold (M2n, g, J) is a l.c.K. manifold
if and only if there exists a globally defined closed 1-form θ on M so that

dω = θ ∧ ω.(31)

The closed 1-form θ is the Lee form of M .
By the expression of Levi-Civita connection and the fact that the Nijenhuis

tensor vanishing on Hermitian manifolds, it is easy to get (see also [8])

(∇XJ)Y =
1

2
{θ(JY )X − θ(Y )JX + g(X,Y )JB − ω(X,Y )B}(32)

for any X,Y ∈ Γ(TM), where the dual vector field B = θ] of θ is so called the
Lee vector field of l.c.K. manifold (M, g, J). By (32) we have

δJ = (1−m)JB.(33)

Combining Proposition 4.2, we have:

Proposition 4.4. Let (M, g, J) be a l.c.K. manifold, B is its Lee vector field.
Then any holomorphic or anti-holomorphic map from M to a quasi-Kähler
manifold is V -harmonic, where V = (1−m)B.

By Theorem 3.2, Theorem 3.3 and Proposition 4.4 we have:

Theorem 4.5. Let (M2m, g, J) be a complete l.c.K. manifold with a pole x0, B
is its Lee vector field. Let (N2n, h, J ′) be a quasi-Kähler manifold. Assume that
the radial curvature Kr of M satisfies one of the following three conditions:

i) −α2 ≤ Kr ≤ −β2 with α > 0, β > 0 and α ≤ m−1
2 β;

ii) − A
(1+r2)1+ε ≤ Kr ≤ B

(1+r2)1+ε with ε > 0, A ≥ 0, 0 ≤ B < 2ε and

e
A
2ε < m

2 − (m− 1) B4ε ;

iii) − a2

c2+r2 ≤ Kr ≤ b2

c2+r2 with a2 ≥ 0, 0 ≤ b2 ≤ 1
4 , c2 ≥ 0 and

√
1 + 4a2 <

m−1
2 (1 +

√
1− 4b2).

Let u : M → N be a holomorphic or anti-holomorphic map. We assume that

|B| ≤ C

2(m− 1)r
,(34)

where C < Λ is a constant, and Λ as in (6). Then we have (7) holds for any
0 < R1 ≤ R2. Furthermore, if the energy of u satisfies

∫
BR(x0)

e(u) = o(RΛ−C),

then u is a constant map. In particular, if the energy of u is finite or moderate
divergent, then u is constant.
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Remark 4.6. It is well known that any holomorphic or anti-holomorphic map
from Hermitian manifolds to Kähler manifolds must be Hermitian Harmonic
(see [15]). Therefore, more generally, we can derive Liouville type theorem for
Hermitian harmonic maps when M and N are Hermitian manifolds and Kähler
manifolds in Theorem 4.3, respectively.

If furthermore, (M2m, g, J) is a globally conformal Kähler manifold (see [8])
in Theorem 4.5, that is, there exists a smooth function f ∈ C∞(M) such that
e−fg is a Kähler metric. Then in this case, the Lee vector field B = 1

m−1JδJ

will suit the assumption |B| ≤ C
2(m−1)r if f satisfies certain condition (see

[23, Example 3.8]).

5. Constant boundary-value problems

In this section, we consider a constant boundary-value problem of V -harmo-
nic maps. For this purpose, we introduce the following definition.

Definition (see [7]). A bounded domain D ⊂ M with C1 boundary ∂D is
called starlike if there exists an interior point x0 ∈ D such that〈

∂

∂rx0

, ν

〉
≥ 0,(35)

where ν is the unit outer normal to ∂D, and the vector field ∂
∂rx0

is the unit

vector field such that for any x ∈ (D \ {x0}) ∪ ∂D, ∂
∂rx0

is the unit vector

tangent to the unique geodesic jointing x0 to x and pointing away from x0.

Theorem 5.1. Let (Mm, g) be a complete Riemannian manifold with a pole
x0, V ∈ Γ(TM). Let (Nn, h) be a Riemannian manifold. Assume that D ⊂M
is a bounded starlike domain with C1 boundary with the pole x0 and the radial
curvature Kr of M satisfies one of the conditions i), ii) and iii) of Theorem 3.2
on D. Let u : M → N be a V -harmonic map with u|∂D = y ∈ N . If

|V | ≤ C

2r
on D,

where C < Λ is a constant, and Λ as in (6). Then u is constant on D.

Proof. Choose X = r ∂∂r , r = rx0 in (4). From the proof of Theorem 3.2 we
have ∫

D

{〈Su,∇X[〉+ (divSu)(X)} ≥ (Λ− C)

∫
D

e(u).(36)

For any η ∈ T (∂D), we have du(η) = 0 since u|∂D is constant. Therefore,

Su(X, ν) = re(u)

〈
∂

∂r
, ν

〉
− r

〈
du(

∂

∂r
), du(ν)

〉
(37)

= r

〈
∂

∂r
, ν

〉
(e(u)− 〈du(ν), du(ν)〉)
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= − r
〈
∂

∂r
, ν

〉
e(u) ≤ 0.

By (4), (36) and (37), we have

0 ≤ (Λ− C)

∫
D

e(u) ≤ 0,

and then e(u) = 0 on D, which implies that u|D ≡ y ∈ N . �

Remark 5.2. Similar to Section 4, as corollaries, we can obtain the correspond-
ing constant boundary-value results about Weyl harmonic maps and holomor-
phic maps.
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