SEIBERG-WITTEN-LIKE EQUATIONS ON THE STRICTLY PSEUDOCONVEX CR-3 MANIFOLDS

Serhan Eker

Abstract

In this paper, Seiberg-Witten-like equations are written down on 3-manifolds. Then, it has been proved that the L^{2}-solutions of these equations are trivial on \mathbb{R}^{3}. Finally, a global solution is obtained on the strictly pseudoconvex $C R-3$ manifolds for a given constant negative scalar curvature.

1. Introduction

The Seiberg-Witten equations, which are consisted of the curvature and Dirac equation, carries subtle information that can be used to investigate the topology and geometry of the manifolds [10, 22, 27]. Although these equations are defined in 4 -manifolds, they are also handled by many authors on higher dimensional manifolds $[4-6,19,22]$. This paper is mainly interested with the Seiberg-Witten-like equations on 3-manifold. Seiberg-Witten-like equations on 3 -manifold are studied to obtain the equations of motion of $U(1)$ Chern-Simons theory coupled to a massless spinor field and investigated their moduli space of the gauge equivalence classes of their solutions [3]. Also, these equations are studied on a compact 3-manifold with boundary to show that solution space of these equations is a Banach manifold [17]. As mentioned above, Seiberg-Witten-like equations have been investigated by many authors in three dimensions $[10,15,18,24,26]$. In this paper, these equations are investigated with a different perspective. Just as in the 4 -manifolds, there is a need for a Spin ${ }^{c}$ structure in order to be able to construct spinor bundle on 3-manifolds. With all these, the Dirac equation can be defined on the spinor bundle. However, the definition of the curvature equation differs from the curvature equation which are defined on 4-manifolds. On 4-manifolds the curvature equation is defined as being dependent on the self-duality concept and also in higher dimensions the curvature equation is defined with the help of the generalised self-duality

[^0]concept [4-6]. Since in 3-manifolds self-duality concept is meaningless, the curvature equation is defined independently from the self-duality concept.

This paper is organized as follows. At first, some basic facts concerning contact metric manifold, Spin ${ }^{c}$-structure and Dirac operator are introduced. Then, in Section 3, Seiberg-Witten-like equations on 3-manifolds are defined and some useful identities are obtained to determine Seiberg-Witten-like functional. Therefore, a bound to the solutions of these equations with the approach given in [16] is obtained. Furthermore, it is proved that L^{2}-solutions of these equations are trivial on \mathbb{R}^{3}. Finally, a global solution to these equations on the strictly pseudoconvex $C R-3$ manifolds is obtained for a given constant negative scalar curvature.

2. Some basic materials

2.1. Contact metric manifolds

Let M be a smooth 3-manifold. A smooth 1-form α on M is called a contact form if $\alpha \wedge(d \alpha) \neq 0$ everywhere on M. A hyperplane subbundle H of the tangent bundle $T M$, which is given by $H=k e r \alpha$, is induced by contact form α. The Reeb vector field ξ is the unique vector field satisfying $\alpha(\xi)=1$ and $d \alpha(\xi, \dot{)}=0$. Then (M, α) is called a contact manifold. The tangent bundle $T M$ splits into $T M=H \oplus \mathbb{R} \xi$. Let X be any vector field on M. Then, the decomposition of X can be written as

$$
X=X_{H}+f \xi
$$

where $f \in C^{\infty}(M, \mathbb{R})$ and X_{H} is the horizontal part of X.
If (M, α) is a contact manifold, the pair $\left(H,\left.d \alpha\right|_{H}\right)$ is a symplectic vector bundle and an almost complex structure J_{H} can be fixed on H, which is compatible with $\left.d \alpha\right|_{H}$. Since $J_{H}^{2}=-I_{d}$, the following eigenspaces decomposition can be given by:

$$
\Lambda_{H}^{1}(M)=H \otimes_{\mathbb{R}} \mathbb{C}=\Lambda_{H}^{1,0}(M) \oplus \Lambda_{H}^{0,1}(M)
$$

where

$$
\begin{aligned}
& \Lambda_{H}^{1,0}(M)=\left\{Z \in H \otimes_{\mathbb{R}} \mathbb{C} \mid J_{H} Z=i Z\right\} \\
& \Lambda_{H}^{0,1}(M)=\left\{Z \in H \otimes_{\mathbb{R}} \mathbb{C} \mid J_{H} Z=-i Z\right\}
\end{aligned}
$$

The complexification of $\Lambda_{H}^{s}(M)$ is decomposed as follows

$$
\Lambda_{H}^{s}(M)=\sum_{q+r=s} \Lambda_{H}^{q, r}(M)
$$

where $\Lambda^{q, r}(M)_{H}=\operatorname{span}\left\{u \wedge v \mid u \in \Lambda^{q}\left(\Lambda_{H}^{1,0}(M)\right), v \in \Lambda^{r}\left(\Lambda_{H}^{0,1}(M)\right)\right\}$. Also, J_{H} can be extended to an endomorphism J of the tangent bundle $T M$ by setting $J \xi=0$. At this point $J^{2}=-I d+\alpha \otimes \xi$ is satisfied. With this in mind, g_{α} defines a Riemannian metric on $T M$ given by

$$
g_{\alpha}(X, Y)=d \alpha(X, J Y)+\alpha(X) \alpha(Y)
$$

The metric g_{α} is called a Webster metric and is said to be associated to α. Moreover, g_{α} satisfies the following relations:

$$
\begin{aligned}
g_{\alpha}(X, Y) & =\alpha(X), g_{\alpha}(J X, Y)=d \alpha(X, Y), \\
g_{\alpha}(J X, J Y) & =g_{\alpha}(X, Y)-\alpha(X) \alpha(Y)
\end{aligned}
$$

for any $X, Y \in \chi(M)$. We call $\left(M, g_{\alpha}, \alpha, \xi, J\right)$ as a contact metric manifold. For more information see [1,2,21].

On the contact metric manifold $\left(M, g_{\alpha}, \alpha, \xi, J\right)$, the generalized TanakaWebster connection $\nabla^{T W}$ is given by:

$$
\nabla_{X}^{T W} Y=\nabla_{X} Y-\left(\nabla_{X} \alpha\right)(Y) \xi-\alpha(X) \nabla_{Y} \xi-\alpha(X) \alpha(Y),
$$

where ∇ is the Levi-Civita connection and $X, Y \in \chi(M)$ [25]. Also, the generalized Tanaka-Webster connection $\nabla^{T W}$ satisfies $\nabla^{T W} \alpha=0$ and $\nabla^{T W} g_{\alpha}=0$. Moreover, if J is integrable, i.e., $\nabla^{T W} J=0$, then the contact metric manifold $\left(M, g_{\alpha}, \alpha, \xi, J\right)$ is called a strictly pseudoconvex $C R$ manifold [20,21].

2.2. Spin c-structure and Dirac operator

A complex vector bundle \mathbb{S} can be constructed by a given Spin^{c} representation $\kappa_{3}: \operatorname{Spin}^{c}(3) \rightarrow \operatorname{Aut}\left(\Delta_{3}\right)$ and denoted by $\mathbb{S}=P_{\text {Spin }^{c}(3)} \times_{\kappa_{3}} \Delta_{3}$. Also this complex vector bundle is called a spinor bundle for a given Spin ${ }^{c}$-structure on $M[8] . \kappa: \mathbb{R}^{3} \rightarrow \operatorname{End}(\mathbb{S})$ is a linear map satisfying the following conditions:

$$
\kappa(v)^{*}+\kappa(v)=0, \quad \kappa(v)^{*} \kappa(v)=|v|^{2} \mathbb{I}
$$

for every $v \in \mathbb{R}^{3}$. Then,

$$
\rho: \Lambda^{2}\left(T^{*} M\right) \rightarrow \operatorname{End}(\mathbb{S})
$$

can be defined on the frames by extending map $\kappa: T M \rightarrow \operatorname{End}(\mathbb{S})$ of κ. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be an orthonormal frame on an open subset $U \subset M$. Then

$$
\alpha=\sum_{i<j} \alpha_{i j} e^{i} \wedge e^{j} \rightarrow \rho(\alpha)=\sum_{i<j} \alpha_{i j} \kappa\left(e_{i}\right) \kappa\left(e_{j}\right) .
$$

ρ can be extended to complex valued 2 -forms such that

$$
\rho: \Lambda^{2}\left(T^{*} M\right) \otimes \mathbb{C} \rightarrow \operatorname{End}(\mathbb{S})
$$

A connection ∇^{A} on \mathbb{S}, which is called a spinor covariant derivative operator, is obtained by using an $i \mathbb{R}$-valued connection 1-form $A \in \Omega(M, i \mathbb{R})$ and the LeviCivita connection ∇ on M. At this point the definition of the Dirac operator $D_{A}: \Gamma(\mathbb{S}) \rightarrow \Gamma(\mathbb{S})$ can be given by

$$
D_{A}(\Psi)=\sum_{i=1}^{3} \kappa\left(e_{i}\right) \nabla_{e_{i}}^{A} \Psi
$$

where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is any positively oriented local orthonormal frame of $T M$ [14]. A Spin ${ }^{c}$-structure is needed to describe the Dirac operator on contact metric manifold. It is known that any contact metric manifold admits a canonical Spin ${ }^{c}$-structure. By using this canonical Spin ${ }^{c}$-structure, an associated
canonical spinor bundle can be constructed and described by the following isomorphism:

$$
\mathbb{S} \cong \Omega^{0, *}(M)
$$

where $\Omega^{0, *}(M)$ is the direct sum of $\Omega(M)^{0,0} \oplus \Omega(M)^{0,1}$. Furthermore, on this spinor bundle, the Clifford multiplication "." is given by:

$$
V \cdot \Psi=\sqrt{2}\left(\left(V_{H}^{0,1}\right)^{*} \wedge \Psi-\iota\left(V_{H}^{0,1}\right) \Psi\right)+i(-1)^{\operatorname{deg} \Psi+1} \eta(V) \psi,
$$

where V_{H} denotes the horizontal part of V. According to these multiplication one can easily obtain $\xi \psi=i(-1)^{\operatorname{deg} \psi+1} \psi$.

The spinor bundle \mathbb{S} carries a natural Hermitian metric, denoted by (,) and for any vector field X and spinor field Ψ, Φ satisfies [11]

$$
\begin{equation*}
(X \cdot \Psi, \Phi)=-(\Psi, X \cdot \Phi) \tag{1}
\end{equation*}
$$

Also, the norm $\|\cdot\|$ in the Hilbert space L^{2} is defined as [8,22],

$$
\begin{equation*}
\|\Psi\|^{2}=\sqrt{\int_{M}|\Psi|^{2} d v o l} \tag{2}
\end{equation*}
$$

On the $2 n+1$-dimensional contact metric manifold $\left(M, g_{\alpha}, \alpha, \xi, J\right)$ equipped with a Spin ${ }^{c}$-structure, each unitary connection A on L induces a spinorial connection ∇^{A} on \mathbb{S} with the generalized Tanaka-Webster connection $\nabla^{T W}$. Then according to ∇^{A} the Kohn-Dirac operator D_{H}^{A} is defined as follows [21]:

$$
\begin{equation*}
D_{H}^{A}=\sum_{i=1}^{2 n} \kappa\left(e_{i}\right)\left(\nabla_{e_{i}}^{A}\right) \tag{3}
\end{equation*}
$$

where $\left\{e_{i}\right\}$ is a local orthonormal frame of H. The Dirac operator D_{A} is defined by [21]

$$
\begin{equation*}
D_{A}=D_{H}^{A}+\xi \cdot \nabla_{\xi}^{A} \tag{4}
\end{equation*}
$$

Also, by considering strictly pseudoconvex CR manifolds with $\Omega_{H}^{0, *}(M)$ associated spinor bundle the Dirac type operator is defined as follows:

Let

$$
\begin{equation*}
\bar{\partial}_{H}: \Omega_{H}^{0, r}(M) \longrightarrow \Omega_{H}^{0, r+1}(M), \bar{\partial}_{H}^{*}: \Omega_{H}^{0, r}(M) \longrightarrow \Omega_{H}^{0, r-1} \tag{5}
\end{equation*}
$$

respectively given by:

$$
\bar{\partial}_{H}=\sum_{i=1}^{n} \bar{Z}_{i}^{*} \wedge \nabla \frac{T W}{\bar{Z}_{i}}, \bar{\partial}_{H}^{*}=-\sum_{i=1}^{n} \iota\left(\overline{Z_{i}}\right)^{*} \wedge \nabla \frac{T W}{\bar{Z}_{i}}
$$

where $\nabla^{T W}$ is the extension of the generalized Webster-Tanaka connection to $\Omega_{H}^{0, *}(M)$ and ι is the contraction operator.

It follows from (3) that we have on $\Omega_{H}^{0, *}(M)$

$$
\begin{equation*}
\mathcal{H}=\sqrt{2} \sum_{r=0}^{n}\left(\bar{\partial}_{H}+\bar{\partial}_{H}^{*}\right)+\sum_{r=0}^{n}(-1)^{r+1} \sqrt{-1} \cdot \nabla_{\xi}^{T W} . \tag{6}
\end{equation*}
$$

Since $\mathbb{S} \cong \Omega_{H}^{0, *}(M),(4)$ coincides with (6).

3. Seiberg-Witten-like equations on 3-manifolds

In this section, we write down Seiberg-Witten-like equation on 3-manifold M. Then, we get explicit forms of these equations on \mathbb{R}^{3}.

Definition. Let M be a 3 -manifold endowed with a $\operatorname{Spin}^{c}(3)$-structure and A be the fixed connection on $U(1)$-principal bundle. Then, for any $\Psi \in \Gamma(\mathbb{S})$ Seiberg-Witten-like equations are defined by

$$
\begin{aligned}
D_{A}(\Psi) & =0 \\
F_{A} & =\frac{1}{4} \sigma(\Psi),
\end{aligned}
$$

where $F_{A}=d A$ is the imaginary-valued curvature 2-form of the connection A in the $P_{S^{1}}$-bundle associated with the Spin ${ }^{c}$-structure.

Moreover, the well known formula called the Schrödinger-Lichnerowicz formula is given by $[8,22]$

$$
\begin{equation*}
D_{A}^{*} D_{A} \Psi=\left(\nabla^{A}\right)^{*} \nabla^{A} \Psi+\frac{s}{4} \Psi+\frac{1}{2} d_{A} \cdot \Psi \tag{7}
\end{equation*}
$$

where s is the scalar curvature of $M,\left(\nabla^{A}\right)^{*}$ is the adjoint of the covariant derivative operator ∇^{A} and D_{A}^{*} is the adjoint of D_{A}.

3.1. Seiberg-Witten-like equations on \mathbb{R}^{3}

Let $\kappa: \mathbb{R}^{3} \rightarrow \operatorname{End}\left(\mathbb{C}^{2}\right)$ be the $\operatorname{Spin}^{c}(3)$-structure which is defined on generators $\left\{e_{1}, e_{2}, e_{3}\right\}$ by the followings:

$$
\begin{aligned}
& \kappa\left(e_{1}\right)=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \kappa\left(e_{2}\right)=\left[\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right] \\
& \kappa\left(e_{3}\right)=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right], \kappa(d \alpha)=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right],
\end{aligned}
$$

where $d \alpha=e^{1} \wedge e^{2}$. Note that there is no decomposition of spinor space over \mathbb{R}^{3} contrary to the case $\mathbb{R}^{4}[8]$. The Spin ${ }^{c}$-connection ∇^{A} on \mathbb{R}^{3} is given by

$$
\nabla_{j}^{A} \Psi=\frac{\partial \Psi}{\partial x_{j}}+\frac{1}{2} A_{j} \Psi
$$

where $A_{j}: \mathbb{R}^{3} \rightarrow i \mathbb{R}$ for $j=1,2,3$ and $\Psi: \mathbb{R}^{3} \rightarrow \mathbb{C}^{2}$ are smooth maps. Then the associated connection on the line bundle $P_{S^{1}}$ is the connection 1-form and represented by

$$
A=\sum_{i=1}^{3} A_{i} d x^{i} \in \Omega\left(\mathbb{R}^{3}, i \mathbb{R}\right)
$$

and its curvature 2 -form is given by

$$
F_{A}=\sum_{i<j}^{3} F_{i j} d x^{i} \wedge d x^{j} \in \Omega^{2}\left(\mathbb{R}^{3}, i \mathbb{R}\right)
$$

where $F_{i j}=\left(\frac{\partial A_{j}}{\partial x_{i}}-\frac{\partial A_{i}}{\partial x_{j}}\right)$ for $i, j=1,2,3$. Then the Dirac operator D_{A} : $\Gamma(\mathbb{S}) \rightarrow \Gamma(\mathbb{S})$ on \mathbb{R}^{3} can be written with respect to given Spin^{c} - connection ∇^{A} as follows:

$$
D_{A} \Psi=\sum_{i=1}^{3} \kappa\left(e_{i}\right) \nabla_{e_{i}}^{A} \Psi
$$

Therefore, the Dirac equation in the flat case is given by

$$
\begin{aligned}
D_{A}(\Psi) & =\kappa\left(e_{1}\right) \nabla_{e_{1}}^{A} \Psi+\kappa\left(e_{2}\right) \nabla_{e_{2}}^{A} \Psi+\kappa\left(e_{3}\right) \nabla_{e_{3}}^{A} \Psi \\
& =\sum_{i=1}^{3} \kappa\left(e_{i}\right)\left(\nabla_{e_{i}}^{A} \Psi\right) \\
& =\sum_{i=1}^{3} \kappa\left(e_{i}\right)\left[\begin{array}{l}
\frac{\partial \psi_{1}}{\partial x_{i}}+\frac{1}{2} A_{i} \psi_{1} \\
\frac{\partial \psi_{2}}{\partial x_{i}}+\frac{1}{2} A_{i} \psi_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
i\left(\frac{\partial \psi_{2}}{\partial x_{2}}+\frac{\partial \psi_{1}}{\partial x_{3}}\right)+\frac{\partial \psi_{2}}{\partial x_{1}}+\frac{1}{2}\left(A_{1} \psi_{2}+i\left(A_{3} \psi_{1}+A_{2} \psi_{2}\right)\right) \\
i\left(-\frac{\partial \psi_{2}}{\partial x_{3}}+\frac{\partial \psi_{1}}{\partial x_{2}}\right)-\frac{\partial \psi_{1}}{\partial x_{1}}+\frac{1}{2}\left(-A_{1} \psi_{1}+i\left(A_{2} \psi_{1}-A_{3} \psi_{2}\right)\right)
\end{array}\right] .
\end{aligned}
$$

Let us consider the complexified space $\Lambda^{2}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}$ and F_{A} be the curvature form of the imaginary valued connection 1-form A. Then,

$$
F_{A}=\sum_{i<j}^{3} F_{i j} d x^{i} \wedge d x^{j}
$$

The curvature equation is defined by

$$
F_{A}=\frac{1}{4} \sigma(\Psi),
$$

where $\sigma(\Psi)$ is an imaginary valued 2-form defined by the formula

$$
\sigma(\Psi)(X, Y)=(X \cdot Y \cdot \Psi, \Psi)+\langle X, Y\rangle|\Psi|^{2}
$$

for any $\Psi \in \Gamma(\mathbb{S})$. The map $\sigma: \Gamma(\mathbb{S}) \rightarrow \Omega^{1}(M, i \mathbb{R})$ is called a quadratic map.
The explicit form of the second equation can be expressed as follows:

$$
\begin{aligned}
& F_{12}=-\frac{i}{4}\left(\left|\psi_{1}\right|^{2}-\left|\psi_{2}\right|^{2}\right), \\
& F_{13}=\frac{i}{4}\left(\overline{\psi_{2}} \psi_{1}+\overline{\psi_{1}} \psi_{2}\right), \\
& F_{23}=\frac{1}{4}\left(\overline{\psi_{2}} \psi_{1}-\overline{\psi_{1}} \psi_{2}\right) .
\end{aligned}
$$

4. Seiberg-Witten-like functional

The Energy functional consistent with the 3-dimensional Seiberg-Witten-like equations is defined by

$$
E(A, \Psi)=\int_{M}\left(\left|D_{A} \Psi\right|^{2}+\left|F_{A}-\frac{1}{4} \sigma(\Psi)\right|^{2}\right) d v o l .
$$

Note that solutions of 3-dimensional Seiberg-Witten-like equations are zeros of Energy functional. In this section, we obtain some useful identities related with spinors and their image under the quadratic map σ. With the aid of the following lemma we obtain another form of Seiberg-Witten-like functional and we get a bound for the solutions of Seiberg-Witten-like equations.

Lemma 4.1. Let $\kappa: T M \rightarrow \operatorname{End}(\mathbb{S})$ be a Spin ${ }^{c}$-structure on a compact oriented smooth 3-dimensional Riemannian manifold M. Then, the following equalities hold

$$
\begin{equation*}
(\sigma(\Psi) \Psi, \Psi)=(\sigma(\Psi), \sigma(\Psi))=|\Psi|^{4} \tag{8}
\end{equation*}
$$

where $\Psi \in \Gamma(\mathbb{S})$ and $\sigma(\Psi) \in \Omega^{2}(M, i \mathbb{R})$.
Lemma 4.1 can be proved with an easy computation.
In the following, we give a bound to the negative constant scalar curvature of (M, g) by using the usual Laplacian on defined as follows [8, 22],

$$
\begin{equation*}
\Delta|\Psi|^{2}=2\left(\left(\nabla^{A}\right)^{*} \nabla^{A} \Psi, \Psi\right)-2\left(\nabla^{A} \Psi, \nabla^{A} \Psi\right) \tag{9}
\end{equation*}
$$

where $\Psi \in \Gamma(\mathbb{S})$ and $\left(\nabla^{A}\right)^{*}$ is the adjoint of the covariant derivative operator ∇^{A}.

Lemma 4.2. Let (A, Ψ) be a solution of $D_{A} \Psi=0, F_{A}=\frac{1}{4} \sigma(\Psi)$ over a compact smooth 3-dimensional Riemannian manifold (M, g) with a negative constant scalar curvature s. Then, at each point

$$
\frac{|\Psi(x)|^{2}}{2} \leq-s_{\min }, \text { where } s_{\min }=\min \{s(m): m \in M\}
$$

Proof. At a point x where $|\Psi(x)|^{2}$ attains its maximum we have $0 \leq \Delta|\Psi|^{2}$. Then

$$
\begin{aligned}
0 \leq \Delta|\Psi|^{2} & =2\left(\left(\nabla^{A}\right)^{*} \nabla^{A} \Psi, \Psi\right)-2\left(\nabla^{A} \Psi, \nabla^{A} \Psi\right) \\
& \leq 2\left(\left(\nabla^{A}\right)^{*} \nabla^{A} \Psi, \Psi\right) \\
& =2\left(D_{A}^{*} D_{A} \Psi-\frac{s}{4} \Psi-\frac{1}{2} d A \cdot \Psi, \Psi\right) \\
& =\left(-\frac{s}{2} \Psi-d A \cdot \Psi, \Psi\right) \\
& =-\frac{s}{2}|\Psi|^{2}-(d A \cdot \Psi, \Psi) \\
& =-\frac{s}{2}|\Psi|^{2}-\frac{1}{4}(\sigma(\Psi) \Psi, \Psi)
\end{aligned}
$$

$$
=-\frac{s}{2}|\Psi|^{2}-\frac{1}{4}|\Psi|^{4} .
$$

Now, if $|\Psi(x)|^{2}>0$, then $0 \leq-\frac{s}{2}|\Psi|^{2}-\frac{1}{4}|\Psi|_{\max }^{4}$ and $\frac{1}{2}\left|\Psi\left(x_{\max }\right)\right|^{2} \leq-s_{\text {min }}$.
Lemma 4.3. Under the same conditions as in Lemma 4.2, the following inequality is satisfied

$$
\left|F_{A}\right| \leq \frac{1}{2}|s| .
$$

Proof.

$$
\begin{aligned}
\left|F_{A}\right|^{2}=\left|\frac{1}{4} \sigma(\Psi)\right|^{2} & =\left(\frac{1}{4} \sigma(\Psi), \frac{1}{4} \sigma(\Psi)\right) \\
& =\frac{1}{16}(\sigma(\Psi), \sigma(\Psi)) \\
& =\frac{1}{16}|\Psi|^{4} .
\end{aligned}
$$

As a result, $\left|F_{A}\right|=\frac{1}{4}|\Psi|^{2} \leq \frac{-s}{2} \leq \frac{1}{2}|s|$.
Since 3-dimensional Hyperbolic space is a Riemannian manifold with negative constant curvature and it satisfies Lemma 4.2 and Lemma 4.3 [9]. In addition, manifolds of negative constant curvature are given in [13].

Lemma 4.4. On the compact oriented smooth 3-dimensional Riemannian manifold (M, g), by considering Seiberg-Witten-like equation:

$$
\begin{equation*}
D_{A} \Psi=0, \quad F_{A}=\frac{1}{4} \sigma(\Psi) \tag{10}
\end{equation*}
$$

the Seiberg-Witten-like functional is obtained as follows

$$
E(A, \Psi)=\int_{M}\left(\left|F_{A}\right|^{2}+\left|\nabla^{A} \Psi\right|^{2}+\frac{s}{4}|\Psi|^{2}+\frac{1}{16}|\Psi|^{4}\right) d v o l .
$$

Proof. Using the Schrodinger-Lichnerowicz formula given in (7), we have

$$
\begin{equation*}
\int_{M}\left|D_{A} \Psi\right|^{2} d v o l=\int_{M}\left[\left|\nabla^{A} \Psi\right|^{2}+\frac{s}{4}|\Psi|^{2}+\left(\frac{1}{2} d A \cdot \Psi, \Psi\right)\right] d v o l . \tag{11}
\end{equation*}
$$

Since F_{A} and $\sigma(\Psi)$ are 2-forms with purely imaginary values, calculating their length amounts to

$$
\left|F_{A}-\frac{1}{4} \sigma(\Psi)\right|^{2}=\left|F_{A}\right|^{2}-\frac{1}{2}(d A \cdot \Psi, \Psi)+\frac{1}{16}|\sigma(\Psi)|^{2} .
$$

This implies

$$
\begin{align*}
E(A, \Psi) & =\int_{M}\left[\left|F_{A}-\frac{1}{4} \sigma(\Psi)\right|^{2}+\left|D_{A} \Psi\right|^{2}\right] d v o l \\
& =\int_{M}\left[\left|F_{A}\right|^{2}+\left|\nabla^{A} \Psi\right|^{2}+\frac{s}{4}|\Psi|^{2}+\frac{1}{16}|\Psi|^{4}\right] d v o l . \tag{12}
\end{align*}
$$

In 3-dimensional case i.e., $M=\mathbb{R}^{3}$, the following lemma shows that L^{2} solutions of these equations are trivial.

Lemma 4.5. Let $A \in \Omega^{1}\left(\mathbb{R}^{3}, i \mathbb{R}\right)$ and $\Psi \in C^{\infty}\left(\mathbb{R}^{3}, \mathbb{C}^{2}\right)$ the following equations are satisfied:

$$
\begin{align*}
& \nabla_{1}^{A} \Psi+\nabla_{2}^{A} \Psi+\nabla_{3}^{A} \Psi=0 \\
& F_{12}=-\frac{i}{4}\left(\left|\psi_{1}\right|^{2}-\left|\psi_{2}\right|^{2}\right)=-\frac{1}{4} \Psi^{*} K \Psi \\
& F_{13}= \frac{i}{4}\left(\overline{\psi_{2}} \psi_{1}+\overline{\psi_{1}} \psi_{2}\right)=\frac{1}{4} \Psi^{*} J \Psi \tag{13}\\
& F_{23}= \frac{1}{4}\left(\overline{\psi_{2}} \psi_{1}-\overline{\psi_{1}} \psi_{2}\right)=-\frac{1}{4} \Psi^{*} I \Psi,
\end{align*}
$$

where

$$
I=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \quad J=\left[\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right], \quad K=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]
$$

Then
(1) If $\Psi \in L^{2}$, then $\Psi \equiv 0$.
(2) If $E(A, \Psi)<\infty$, then $\Psi \equiv 0$ and $F_{A} \equiv 0$.

Proof. Let

$$
\begin{equation*}
\Delta=-\sum_{i=1}^{3} \frac{\partial^{2}}{\left(\partial x^{i}\right)^{2}} \tag{14}
\end{equation*}
$$

be the usual Laplacian on \mathbb{R}^{3}. At first we claim that

$$
\begin{equation*}
\Delta|\Psi|^{2}=-2 \sum_{i=1}^{3} \frac{\partial}{\partial x^{i}} \operatorname{Re}\left(\Psi, \nabla_{i}^{A} \Psi\right) . \tag{15}
\end{equation*}
$$

To proof our claim we compute

$$
\begin{align*}
\frac{\partial}{\partial x^{i}}|\Psi|^{2} & =\partial_{i}\left(\overline{\psi_{1}} \psi_{1}+\overline{\psi_{2}} \psi_{2}\right) \\
& =\overline{\psi_{1}} \partial_{i} \psi_{1}+\psi_{1} \partial_{i} \overline{\psi_{1}}+\overline{\psi_{2}} \partial_{i} \psi_{2}+\psi_{2} \partial_{i} \overline{\psi_{2}}, \tag{16}
\end{align*}
$$

and

$$
\begin{align*}
\left(\Psi, \nabla_{i}^{A} \Psi\right) & =\left(\Psi, \partial_{i} \Psi+\frac{1}{2} A_{i} \Psi\right) \\
& =\overline{\psi_{1}}\left(\partial_{i} \psi_{1}+\frac{1}{2} A_{i} \psi_{1}\right)+\overline{\psi_{2}}\left(\partial_{i} \psi_{2}+\frac{1}{2} A_{i} \psi_{2}\right) \\
& =\overline{\psi_{1}} \partial_{i} \psi_{1}+\overline{\psi_{2}} \partial_{i} \psi_{2}+\frac{1}{2} A_{i}\left(\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}\right) \tag{17}
\end{align*}
$$

By inserting (17) into the following equality

$$
\begin{align*}
2 \operatorname{Re}\left(\Psi, \nabla_{i}^{A} \Psi\right) & =\left(\Psi, \nabla_{i}^{A} \Psi\right)+\overline{\left(\Psi, \nabla_{i}^{A} \Psi\right)} \\
& =\overline{\psi_{1}} \partial_{i} \psi_{1}+\psi_{1} \partial_{i} \overline{\psi_{1}}+\overline{\psi_{2}} \partial_{i} \psi_{2}+\psi_{2} \partial_{i} \overline{\psi_{2}} \tag{18}
\end{align*}
$$

is obtained. At the end, by comparing (16) with (18), one gets the following equality:

$$
\frac{\partial}{\partial x^{i}}|\Psi|^{2}=2 \operatorname{Re}\left(\Psi, \nabla_{i}^{A} \Psi\right)
$$

Also, this equality can be written as in the following

$$
-\frac{\partial^{2}}{\left(\partial x^{i}\right)^{2}}|\Psi|^{2}=-2 \frac{\partial}{\partial x^{i}} \operatorname{Re}\left(\Psi, \nabla_{i}^{A} \Psi\right)
$$

which means that (14) equals to (15).
Moreover, one can show that

$$
\begin{equation*}
\frac{\partial}{\partial x^{i}}\left(\operatorname{Re}\left(\Psi, \nabla_{i}^{A} \Psi\right)\right)=\left|\nabla_{i}^{A} \Psi\right|^{2}+\operatorname{Re}\left(\Psi, \nabla_{i}^{A} \nabla_{i}^{A} \Psi\right) \tag{19}
\end{equation*}
$$

To obtain this, firstly, the right side of (19) is computed:

$$
\begin{aligned}
2 \frac{\partial}{\partial x^{i}} \operatorname{Re}\left(\Psi, \nabla_{i}^{A} \Psi\right)= & \frac{\partial}{\partial x^{i}}\left(\overline{\psi_{1}} \partial_{i} \psi_{1}+\psi_{1} \partial_{i} \overline{\psi_{1}}+\overline{\psi_{2}} \partial_{i} \psi_{2}+\psi_{2} \partial_{i} \overline{\psi_{2}}\right) \\
= & \frac{\overline{\psi_{1}} \partial_{i} \partial_{i} \psi_{1}+\partial_{i} \overline{\psi_{1}} \partial_{i} \psi_{1}+\psi_{1} \partial_{i} \partial_{i} \overline{\psi_{1}}+\partial_{i} \psi_{1} \partial_{i} \overline{\psi_{1}}}{} \begin{aligned}
& +\overline{\psi_{2}} \partial_{i} \partial_{i} \psi_{2}+\partial_{i} \overline{\psi_{2}} \partial_{i} \psi_{2}+\psi_{2} \partial_{i} \partial_{i} \overline{\psi_{2}}+\partial_{i} \psi_{2} \partial_{i} \overline{\psi_{2}} \\
= & \overline{\psi_{1}} \partial_{i} \partial_{i} \psi_{1}+\psi_{1} \partial_{i} \partial_{i} \overline{\psi_{1}}+\overline{\psi_{2}} \partial_{i} \partial_{i} \psi_{2}+\psi_{2} \partial_{i} \partial_{i} \overline{\psi_{2}} \\
& +\partial_{i} \psi_{1} \partial_{i} \overline{\psi_{1}}+\partial_{i} \psi_{2} \partial_{i} \overline{\psi_{2}} .
\end{aligned} .
\end{aligned}
$$

Explicit form of $\left|\nabla_{i}^{A} \Psi\right|^{2}$ is obtained as in the following:

$$
\begin{align*}
2\left|\nabla_{i}^{A} \Psi\right|^{2} & =2\left(\nabla_{i}^{A} \Psi, \nabla_{i}^{A} \Psi\right) \\
& =2\left(\partial_{i} \Psi, \partial_{i} \Psi\right)+\left(\partial_{i} \Psi, A_{i} \Psi\right)+\left(A_{i} \Psi, \partial_{i} \Psi\right)+\frac{1}{2}\left(A_{i} \Psi, A_{i} \Psi\right) \tag{21}\\
& =2 \partial_{i} \overline{\psi_{1}} \partial_{i} \psi_{1}+2 \partial_{i} \overline{\psi_{2}} \partial_{i} \psi_{2}+2 \operatorname{Re}\left(\partial_{i} \Psi, A_{i} \Psi\right)+\frac{1}{2}\left|A_{i} \Psi\right|^{2}
\end{align*}
$$

Also,

$$
\begin{align*}
\nabla_{i}^{A} \nabla_{i}^{A} \Psi & =\left(\partial_{i}+\frac{1}{2} A_{i}\right)\left(\partial_{i} \Psi+\frac{1}{2} A_{i} \Psi\right) \\
& =\partial_{i} \partial_{i} \Psi+\frac{1}{2} \partial_{i}\left(A_{i} \Psi\right)+\frac{1}{2} A_{i} \partial_{i} \Psi+\frac{1}{4} A_{i}^{2} \Psi \\
& =\partial_{i} \partial_{i} \Psi+\frac{1}{2} A_{i} \partial_{i} \Psi+\frac{1}{2} \Psi \partial_{i} A_{i}+\frac{1}{2} A_{i} \partial_{i} \Psi+\frac{1}{4} A_{i}^{2} \Psi \tag{22}\\
& =\partial_{i} \partial_{i} \Psi+A_{i} \partial_{i} \Psi+\frac{1}{2} \Psi \partial_{i} A_{i}+\frac{1}{4} A_{i}^{2} \Psi \\
& =\partial_{i} \partial_{i} \Psi+A_{i} \partial_{i} \Psi+\frac{1}{2} \Psi \partial_{i} A_{i}-\frac{1}{4}\left|A_{i}\right|^{2} \Psi
\end{align*}
$$

Hermitian inner product Ψ with (22) is calculated by

$$
\left(\Psi, \nabla_{i}^{A} \nabla_{i}^{A} \Psi\right)=\left(\Psi, \partial_{i} \partial_{i} \Psi\right)+A_{i}\left(\Psi, \partial_{i} \Psi\right)+\frac{1}{2} \partial_{i} A_{i}(\Psi, \Psi)-\frac{1}{4}\left|A_{i}\right|^{2}(\Psi, \Psi)
$$

$$
\begin{equation*}
=\overline{\psi_{1}} \partial_{i} \partial_{i} \Psi_{1}+\overline{\psi_{2}} \partial_{i} \partial_{i} \psi_{2}+A_{i}\left(\Psi, \partial_{i} \Psi\right)+\frac{1}{2} \partial_{i} A_{i}|\Psi|^{2}-\frac{1}{4}\left|A_{i} \Psi\right|^{2} \tag{23}
\end{equation*}
$$

The real part of (23) is

$$
\begin{align*}
2 \operatorname{Re}\left(\Psi, \nabla_{i}^{A} \nabla_{i}^{A} \Psi\right)= & \left(\Psi, \nabla_{i}^{A} \nabla_{i}^{A} \Psi\right)+\overline{\left(\Psi, \nabla_{i} \nabla_{i} \Psi\right)} \\
= & \overline{\psi_{1}} \partial_{i} \partial_{i} \Psi_{1}+\overline{\psi_{2}} \partial_{i} \partial_{i} \psi_{2}+A_{i}\left(\Psi, \partial_{i} \Psi\right)+\frac{1}{2} \partial_{i} A_{i}|\Psi|^{2} \\
& -\frac{1}{4}\left|A_{i} \Psi\right|^{2}+\psi_{1} \partial_{i} \partial_{i} \overline{\Psi_{1}}+\psi_{2} \partial_{i} \partial_{i} \overline{\psi_{2}}-A_{i} \overline{\left(\Psi, \partial_{i} \Psi\right)} \tag{24}\\
& -\frac{1}{2} \partial_{i} A_{i}|\Psi|^{2}-\frac{1}{4}\left|A_{i} \Psi\right|^{2} .
\end{align*}
$$

Since

$$
\begin{align*}
A_{i}\left(\Psi, \partial_{i} \Psi\right) & =\left(\overline{A_{i}} \Psi, \partial_{i} \Psi\right)=\left(-A_{i} \Psi, \partial_{i} \Psi\right) \\
& =-\left(A_{i} \Psi, \partial_{i} \Psi\right) \\
& =-\overline{\left(\partial_{i} \Psi, A_{i} \Psi\right)}, \tag{25}
\end{align*}
$$

$$
\begin{aligned}
\operatorname{Re}\left(A_{i}\left(\Psi, \partial_{i} \Psi\right)\right) & =-\operatorname{Re} \overline{\left(\partial_{i} \Psi, A_{i} \Psi\right)} \\
& =-\operatorname{Re}\left(\partial_{i} \Psi, A_{i} \Psi\right)
\end{aligned}
$$

are obtained. Inserting (26) in (24), one has

$$
\begin{aligned}
2 \operatorname{Re}\left(\Psi, \nabla_{i} \nabla_{i} \Psi\right)= & \overline{\psi_{1}} \partial_{i} \partial_{i} \psi_{1}+\psi_{1} \partial_{i} \partial_{i} \overline{\psi_{1}}+\overline{\psi_{2}} \partial_{i} \partial_{i} \psi_{2}+\psi_{2} \partial_{i} \partial_{i} \overline{\psi_{2}} \\
& -2 \operatorname{Re}\left(\partial_{i} \Psi, A_{i} \Psi\right)-\frac{1}{2}\left|A_{i} \Psi\right|^{2}
\end{aligned}
$$

Since (20) is the sum of (21) and (24), (19) is proved.
Considering the scalar curvature $s=0$ and Dirac equation $D_{A} \Psi=0$ in (7), we get

$$
\left(\nabla_{i}^{A}\right)^{*} \nabla_{i}^{A} \Psi+\frac{1}{2} d A \cdot \Psi=0 .
$$

Since $\left(\nabla^{A}\right)^{*}=-\nabla^{A}[8,22]$, we obtain

$$
\begin{equation*}
\nabla_{i}^{A} \nabla_{i}^{A} \Psi=\frac{1}{2} F_{A} \cdot \Psi \tag{27}
\end{equation*}
$$

Inserting (27) in (19), we get the following equation:
$\Delta|\Psi|^{2}=-2 \sum_{i=1}^{3}\left|\nabla_{i}^{A} \Psi\right|^{2}+\operatorname{Re}\left(\Psi, \rho\left(F_{A}\right) \Psi\right)$
$(28) \quad=-2 \sum_{i=1}^{3}\left|\nabla_{i}^{A} \Psi\right|^{2}-2 \operatorname{Re}\left(\Psi, F_{12} K \Psi\right)-\operatorname{Re}\left(\Psi, F_{13} J \Psi\right)-\operatorname{Re}\left(\Psi, F_{23} I \Psi\right)$.
By using (13) in the following Hermitian inner product
(1) $\left(\Psi, F_{12} K \Psi\right)=\left(\Psi,\left(-\frac{1}{4} \Psi^{*} K \Psi\right) K \Psi\right)$

$$
\begin{aligned}
& =\left(-\frac{1}{4} \Psi^{*} K \Psi\right)(\Psi, K \Psi) \\
& =-\frac{i}{4}\left(\left|\psi_{1}\right|^{2}-\left|\psi_{2}\right|^{2}\right) i\left(\left|\psi_{1}\right|^{2}-\left|\psi_{2}\right|^{2}\right) \\
& =\frac{1}{4}\left|\Psi^{*} K \Psi\right|^{2}
\end{aligned}
$$

is obtained. Also the following holds

$$
\begin{equation*}
-\operatorname{Re}\left(\Psi, F_{12} K \Psi\right)=-\frac{1}{4}\left|\Psi^{*} K \Psi\right|^{2} \tag{29}
\end{equation*}
$$

Similarly, by using (13), one can obtain
(2) $\left(\Psi, F_{13} J \Psi\right)=\left(\Psi,\left(\frac{1}{4} \Psi^{*} J \Psi\right) J \Psi\right)$

$$
\begin{aligned}
& =\left(\frac{1}{4} \Psi^{*} J \Psi\right)(\Psi, J \Psi) \\
& =\frac{i}{4}\left(\overline{\psi_{2}} \psi_{1}+\overline{\psi_{1}} \psi_{2}\right) i\left(\overline{\psi_{1}} \psi_{2}+\overline{\psi_{2}} \psi_{1}\right) \\
& =-\frac{1}{4}\left|\Psi^{*} J \Psi\right|^{2}
\end{aligned}
$$

and then

$$
\begin{equation*}
-\operatorname{Re}\left(\Psi, F_{13} J \Psi\right)=\frac{1}{4}\left|\Psi^{*} J \Psi\right|^{2} \tag{30}
\end{equation*}
$$

At the end, with the aid of (13) the following identity holds
(3) $\left(\Psi, F_{23} I \Psi\right)=\left(\Psi,\left(-\frac{1}{4} \Psi^{*} I \Psi\right) I \Psi\right)$

$$
\begin{aligned}
& =-\left(\frac{1}{4} \Psi^{*} I \Psi\right)(\Psi, I \Psi) \\
& =\frac{1}{4}\left(\overline{\psi_{2}} \psi_{1}-\overline{\psi_{1}} \psi_{2}\right)\left(\overline{\psi_{1}} \psi_{2}-\overline{\psi_{2}} \psi_{1}\right) \\
& =\frac{1}{4}\left|\Psi^{*} I \Psi\right|^{2}
\end{aligned}
$$

Then,
(31)

$$
-\operatorname{Re}\left(\Psi, F_{23} I \Psi\right)=-\frac{1}{4}\left|\Psi^{*} I \Psi\right|^{2}
$$

is obtained. By inserting (29), (30), (31) into (28), one has

$$
\begin{equation*}
\Delta|\Psi|^{2}=-2 \sum_{i=1}^{3}\left|\nabla_{i}^{A} \Psi\right|^{2}-\frac{1}{4}\left|\Psi^{*} K \Psi\right|^{2}+\frac{1}{4}\left|\Psi^{*} J \Psi\right|^{2}-\frac{1}{4}\left|\Psi^{*} I \Psi\right|^{2} . \tag{32}
\end{equation*}
$$

Accordingly, the last three terms are obtained as:

$$
\begin{aligned}
& \left|\Psi^{*} K \Psi\right|^{2}-\left|\Psi^{*} J \Psi\right|^{2}+\left|\Psi^{*} I \Psi\right|^{2} \\
= & \left(\left|\psi_{1}\right|^{2}-\left|\psi_{2}\right|^{2}\right)^{2}+\left(\overline{\psi_{2}} \psi_{1}+\overline{\psi_{1}} \psi_{2}\right)^{2}+\left(\overline{\psi_{2}} \psi_{1}-\overline{\psi_{1}} \psi_{2}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
= & \left|\psi_{1}\right|^{4}-2\left|\psi_{1}\right|^{2}\left|\psi_{2}\right|^{2}+\left|\psi_{2}\right|^{4}-{\overline{\psi_{2}}}^{2} \psi_{1}^{2}+2\left|\psi_{2}\right|^{2}\left|\psi_{1}\right|^{2}-{\overline{\psi_{1}}}^{2} \psi_{2}^{2} \\
& \quad+{\overline{\psi_{1}}}^{2} \psi_{2}^{2}+2\left|\psi_{1}\right|^{2}\left|\psi_{2}\right|^{2}+{\overline{\psi_{2}}}^{2} \psi_{1}^{2} \\
= & \left(\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}\right)^{2} \\
= & |\Psi|^{4} .
\end{aligned}
$$

After inserting (33) in (32), we get $\Delta|\Psi|^{2} \leq 0$ which means that the function

$$
x \longrightarrow|\Psi(x)|^{2}: \mathbb{R}^{3} \longrightarrow \mathbb{R}
$$

is subharmonic on $\mathbb{R}^{3}[22]$. As a result, $|\Psi(x)|^{2}$ satisfies the mean value inequality for subharmonic functions. According to the Mean Value Theorem for subharmonic function, the following inequality is satisfied for any $r>0$ and any $x \in \mathbb{R}^{3}$,

$$
|\Psi(x)|^{2} \leq \frac{3}{4 \pi r^{3}} \int_{B_{r}(x)}|\Psi(x)|^{2} d v o l
$$

where $B_{r}(x)$ is the closed ball of radius r about $x[7,12,23]$. If $\Psi \in L^{2}$, $\int_{\mathbb{R}^{3}}|\Psi(x)|^{2} d v o l<\infty$. Hence, L^{2}-norm of Ψ is finite. Denoting the value of this integral by κ, we obtain

$$
|\Psi(x)|^{2} \leq \frac{3 \kappa}{4 \pi r^{3}}
$$

Since the L^{2}-norm of Ψ is finite it follows, by taking the limit $r \rightarrow \infty$, that $\Psi(x)=0$ for all $x \in \mathbb{R}^{3}$.

To prove second part, similar way is used. By inserting (33) into (32), one can provide

$$
\begin{equation*}
\Delta|\Psi|^{2}=-2 \sum_{i=1}^{3}\left|\nabla_{i}^{A} \Psi\right|^{2}-\frac{1}{4}|\Psi|^{4} . \tag{34}
\end{equation*}
$$

By means of standard identity from vector calculus, one has

$$
\Delta(f \cdot g)=f \cdot \Delta g-2 \nabla f \cdot \nabla g+g \cdot \Delta f
$$

Taking $g=f$, one can provide

$$
\Delta\left(f^{2}\right)=-2 \nabla f \cdot \nabla f+2 f \cdot \Delta f
$$

so

$$
\begin{aligned}
\Delta|\Psi|^{4} & =\Delta\left(|\Psi|^{2}\right)^{2} \\
& =-2\left(\nabla|\Psi|^{2}\right) \cdot\left(\nabla|\Psi|^{2}\right)+2|\Psi|^{2} \Delta|\Psi|^{2}
\end{aligned}
$$

then

$$
\Delta|\Psi|^{4}=-2\left(\nabla|\Psi|^{2}\right) \cdot\left(\nabla|\Psi|^{2}\right)-4|\Psi|^{2} \sum_{i=1}^{3}\left|\nabla_{i}^{A} \Psi\right|^{2}-\frac{1}{2}|\Psi|^{6}
$$

Consequently, $\Delta|\Psi|^{4} \leq 0$ on \mathbb{R}^{3} so $x \longrightarrow|\Psi(x)|^{4}$ is subharmonic on \mathbb{R}^{3}. Thus, for every $r>0$ and every $x \in \mathbb{R}^{3}$,

$$
\begin{equation*}
|\Psi(x)|^{4} \leq \frac{3}{4 \pi r^{3}} \int_{B_{r}(x)}|\Psi(x)|^{4} d v o l . \tag{35}
\end{equation*}
$$

The assumptions $E(A, \Psi)<\infty$ can be written as in the following

$$
\begin{equation*}
E(A, \Psi)=\int_{M}\left(\left|F_{A}\right|^{2}+\left|\nabla^{A} \Psi\right|^{2}+\frac{R}{4}|\Psi|^{2}+\frac{1}{16}|\Psi|^{4}\right) d v o l<\infty \tag{36}
\end{equation*}
$$

From (36), one has

$$
\begin{equation*}
\int_{\mathbb{R}^{3}}|\Psi|^{4} d v o l<\infty \tag{37}
\end{equation*}
$$

This means that $\Psi \equiv 0$ on \mathbb{R}^{3}. Consequently under the assumption $E(A, \Psi)<$ $\infty, F_{A} \equiv 0$ since $\Psi \equiv 0$.

5. A non-trivial solution to Seiberg-Witten-like equations on 3-dimensional contact metric manifolds

In this section, Seiberg-Witten-like equations on the 3 -dimensional strictly pseudoconvex $C R-3$ manifolds are written and a global solution to these equations is given.

On the 3-dimensional strictly pseudoconvex $C R-3$ manifolds, the spinor bundle can be decomposed as follows:

$$
\mathbb{S} \cong \Lambda_{H}^{0,1}(M) \oplus \Lambda_{H}^{0,0}(M)
$$

where $\Lambda_{H}^{0,1}(M)$ is the eigenspace corresponding to the eigenvalue i of the mapping $\kappa(d \alpha): \mathbb{S} \rightarrow \mathbb{S}$ and has dimension $1, \Lambda_{H}^{0,0}(M)$ is the eigenspace corresponding to the eigenvalue $-i$ of the mapping $\kappa(d \alpha): \mathbb{S} \rightarrow \mathbb{S}$ and has dimension 1. If $\Psi_{0} \in \mathbb{S}$, isomorphic to the constant function $1 \in \Lambda_{H}^{0,0}(M)$, then Ψ_{0} denotes the spinor corresponding to the constant function 1 in the chosen coordinates

$$
\Psi_{0}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

By using the expression of $\sigma_{H}(\Psi)$ in the local coordinates and $d \alpha \cdot \Psi_{0}=-i \Psi_{0}$, the following identity is obtained:

$$
\sigma_{H}\left(\Psi_{0}\right)=i d \alpha
$$

On the subbundle H,the Ricci form ρ_{H} is defined by

$$
\begin{equation*}
\rho_{H}(X, Y)=\operatorname{Ric}\left(X, J_{H} Y\right)=g_{\alpha}\left(X, J_{H} \operatorname{Ric} Y\right) \tag{38}
\end{equation*}
$$

for any $X, Y \in \Gamma(H)$. Since on the strictly pseudoconvex CR manifold, the almost complex structure J_{H} is complex,

$$
\begin{equation*}
\operatorname{Ric}(X, Y)=i \rho_{H}(X, Y) \tag{39}
\end{equation*}
$$

for any $X, Y \in \Gamma(H)$.

Proposition 5.1. Suppose that ρ_{H} be a Ricci form on the subbundle H and s_{H} be a scalar curvature of H. Then, one can satisfy the following identity:

$$
\begin{equation*}
\rho=-\frac{s_{H}}{2} d \alpha . \tag{40}
\end{equation*}
$$

Proof. According to the local coordinates, the almost complex structure J is given as follows:

$$
J=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Since $J \circ$ Ric $=$ Ric $\circ J$ commutative, the reduced form of the Ric is

$$
\text { Ric }=\left[\begin{array}{ccc}
R_{11} & 0 & 0 \\
0 & R_{11} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

By using (38) the explicit form of ρ_{H} is:

$$
\begin{equation*}
\rho_{H}=-R_{11} e^{1} \wedge e^{2}=-\frac{s_{H}}{2} d \alpha \tag{41}
\end{equation*}
$$

In the following theorem, a special solution of Seiberg-Witten-like equations is given on the 3 -dimensional strictly pseudoconvex contact metric manifold.

Theorem 5.2. Let $\left(M, g_{\alpha}, \alpha, \xi, J\right)$ be a strictly pseudoconvex CR-3 manifold. Then, for a given negative and constant scalar curvature $s_{H},(A, \Psi=$ $\left.\sqrt{-2 s_{H}} \Psi_{0}\right)$ is the solution of Seiberg-Witten-like equations.

Proof. By using Ψ we get $\sigma_{H}(\Psi)=i d \alpha$. Also it can be written as

$$
\begin{equation*}
\sigma_{H}(\Psi)=-2 i s_{H} d \alpha \tag{42}
\end{equation*}
$$

By using (39) and (42), one can satisfy,

$$
\begin{equation*}
F_{A}=R i c=i \rho_{H}=-i \frac{s_{H}}{2} d \alpha=\frac{1}{4} \sigma_{H}(\Psi) . \tag{43}
\end{equation*}
$$

Since $\sigma_{H}(\Psi)=\sigma(\Psi)$,

$$
\begin{equation*}
F_{A}=\frac{1}{4} \sigma(\Psi) \tag{44}
\end{equation*}
$$

is satisfied.
The following is easily hold. By using the spinor field Ψ_{0} corresponding to the constant function 1 , one can obtain

$$
\begin{equation*}
\mathcal{H}(1)=\sqrt{2} \sum_{r=0}^{n}\left(\bar{\partial}_{H}+\bar{\partial}_{H}^{*}\right)(1)+\sum_{r=0}^{n}(-1)^{r+1} \sqrt{-1} \cdot \nabla_{\xi}^{T W}(1)=0 . \tag{45}
\end{equation*}
$$

This means that $D_{A_{0}} \Psi=D_{H}^{A_{0}} \Psi+\xi \cdot \nabla_{\xi}^{A_{0}} \Psi=0$.
As a result, $\left(A, \Psi=\sqrt{-2 s_{H}} \Psi_{0}\right)$ is the solution of Seiberg-Witten-like equations on the strictly pseudoconvex $C R-3$ manifold.

A 3-dimensional Hiperbolic space with a negative and constant scalar curvature can be given for the Theorem (5.2) (see [9]).

References

[1] H. Baum, Lorentzian twistor spinors and CR-geometry, Differential Geom. Appl. 11 (1999), no. 1, 69-96. https://doi.org/10.1016/S0926-2245(99)00020-0
[2] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203, Birkhäuser Boston, Inc., Boston, MA, 2002. https://doi.org/10. 1007/978-1-4757-3604-5
[3] A. L. Carey, B. L. Wang, R. Zhang, and J. McCarthy, Seiberg-Witten monopoles in three dimensions, Lett. Math. Phys. 39 (1997), no. 3, 213-228. https://doi.org/10.1023/A: 1007319915035
[4] N. Değirmenci and Bulut, Seiberg-Witten-like equations on 6-dimensional $S U(3)$ manifolds, Balkan J. Geom. Appl. 20 (2015), no. 2, 23-31.
[5] N. Değirmenci and N. Özdemir, Seiberg-Witten-like equations on 7-manifolds with G_{2} structure, J. Nonlinear Math. Phys. 12 (2005), no. 4, 457-461.
[6] S. Eker, Seiberg-Witten equations on 8-dimensional manifolds with different self-duality, Balkan J. Geom. Appl. 22 (2017), no. 2, 37-43.
[7] C. Fefferman and E. M. Stein, H^{p} spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137-193. https://doi.org/10.1007/BF02392215
[8] T. Friedrich, Dirac operators in Riemannian geometry, translated from the 1997 German original by Andreas Nestke, Graduate Studies in Mathematics, 25, American Mathematical Society, Providence, RI, 2000. https://doi.org/10.1090/gsm/025
[9] T. Jørgensen, Compact 3-manifolds of constant negative curvature fibering over the circle, Ann. of Math. (2) 106 (1977), no. 1, 61-72. https://doi.org/10.2307/1971158
[10] P. Kronheimer and T. Mrowka, Monopoles and three-manifolds, New Mathematical Monographs, 10, Cambridge University Press, Cambridge, 2007. https://doi.org/10. 1017/CB09780511543111
[11] H. B. Lawson, Jr. and M.-L. Michelsohn, Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, Princeton, NJ, 1989.
[12] J. E. Littlewood and G. H. Hardy, Some properties of conjugate functions, J. Reine Angew. Math. 167 (1932), 405-423. https://doi.org/10.1515/crll.1932.167.405
[13] J. Lohkamp, Metrics of negative Ricci curvature, Ann. of Math. (2) 140 (1994), no. 3, 655-683. https://doi.org/10.2307/2118620
[14] J. W. Morgan, The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes, 44, Princeton University Press, Princeton, NJ, 1996.
[15] T. Mrowka, P. Ozsváth, and B. Yu, Seiberg-Witten monopoles on Seifert fibered spaces, Comm. Anal. Geom. 5 (1997), no. 4, 685-791. https://doi.org/10.4310/CAG.1997.v5. n4.a3
[16] G. L. Naber, Topology, geometry, and gauge fields, Texts in Applied Mathematics, 25, Springer-Verlag, New York, 1997. https://doi.org/10.1007/978-1-4757-2742-5
[17] T. Nguyen, The Seiberg-Witten equations on manifolds with boundary I: the space of monopoles and their boundary values, Comm. Anal. Geom. 20 (2012), no. 3, 565-676. https://doi.org/10.4310/CAG.2012.v20.n3.a5
[18] L. I. Nicolaescu, Adiabatic limits of the Seiberg-Witten equations on Seifert manifolds, Comm. Anal. Geom. 6 (1998), no. 2, 331-392. https://doi.org/10.4310/CAG.1998.v6. n2.a5
[19] _, Notes on Seiberg-Witten theory, Graduate Studies in Mathematics, 28, American Mathematical Society, Providence, RI, 2000. https://doi.org/10.1090/gsm/028
[20] R. Petit, Harmonic maps and strictly pseudoconvex CR manifolds, Comm. Anal. Geom. 10 (2002), no. 3, 575-610. https://doi.org/10.4310/CAG.2002.v10.n3.a5
[21] , Spin ${ }^{c}$-structures and Dirac operators on contact manifolds, Differential Geom. Appl. 22 (2005), no. 2, 229-252. https://doi.org/10.1016/j.difgeo.2005.01.003
[22] D. Salamon, Spin geometry and Seiberg-Witten invariants, Citeseer, 1996.
[23] A. Shkheam, Spaces of harmonic functions and harmonic quasiconformal mappings, Doctoral Thesis, Belgrade, 2013.
[24] A. I. Stipsicz, Gauge theory and Stein fillings of certain 3-manifolds, Turkish J. Math. 26 (2002), no. 1, 115-130.
[25] S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1989), no. 1, 349-379. https://doi.org/10.2307/2001446
[26] C. H. Taubes, The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007), 2117-2202. https://doi.org/10.2140/gt.2007.11.2117
[27] E. Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), no. 6, 769-796. https://doi.org/10.4310/MRL.1994.v1.n6.a13

Serhan Eker
Department Mathematics
Ağri İbrahim Çeçen University
Ağri 04000, Turkey
Email address: srhaneker@gmail.com

[^0]: Received December 28, 2018; Revised May 11, 2019; Accepted August 5, 2019.
 2010 Mathematics Subject Classification. Primary 53C27, 15A66, 34L40.
 Key words and phrases. Spin and Spin ${ }^{c}$ geometry, Clifford algebras, spinors, SeibergWitten equations.

