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SEIBERG-WITTEN-LIKE EQUATIONS ON THE STRICTLY

PSEUDOCONVEX CR-3 MANIFOLDS

Serhan Eker

Abstract. In this paper, Seiberg-Witten-like equations are written down

on 3-manifolds. Then, it has been proved that the L2-solutions of these
equations are trivial on R3. Finally, a global solution is obtained on the

strictly pseudoconvex CR-3 manifolds for a given constant negative scalar
curvature.

1. Introduction

The Seiberg-Witten equations, which are consisted of the curvature and
Dirac equation, carries subtle information that can be used to investigate the
topology and geometry of the manifolds [10, 22, 27]. Although these equations
are defined in 4-manifolds, they are also handled by many authors on higher
dimensional manifolds [4–6, 19, 22]. This paper is mainly interested with the
Seiberg-Witten-like equations on 3-manifold. Seiberg-Witten-like equations on
3-manifold are studied to obtain the equations of motion of U(1) Chern-Simons
theory coupled to a massless spinor field and investigated their moduli space
of the gauge equivalence classes of their solutions [3]. Also, these equations are
studied on a compact 3-manifold with boundary to show that solution space
of these equations is a Banach manifold [17]. As mentioned above, Seiberg-
Witten-like equations have been investigated by many authors in three dimen-
sions [10, 15, 18, 24, 26]. In this paper, these equations are investigated with a
different perspective. Just as in the 4-manifolds, there is a need for a Spinc-
structure in order to be able to construct spinor bundle on 3-manifolds. With
all these, the Dirac equation can be defined on the spinor bundle. However, the
definition of the curvature equation differs from the curvature equation which
are defined on 4-manifolds. On 4-manifolds the curvature equation is defined
as being dependent on the self-duality concept and also in higher dimensions
the curvature equation is defined with the help of the generalised self-duality
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concept [4–6]. Since in 3-manifolds self-duality concept is meaningless, the
curvature equation is defined independently from the self-duality concept.

This paper is organized as follows. At first, some basic facts concerning
contact metric manifold, Spinc-structure and Dirac operator are introduced.
Then, in Section 3, Seiberg-Witten-like equations on 3-manifolds are defined
and some useful identities are obtained to determine Seiberg-Witten-like func-
tional. Therefore, a bound to the solutions of these equations with the approach
given in [16] is obtained. Furthermore, it is proved that L2-solutions of these
equations are trivial on R3. Finally, a global solution to these equations on the
strictly pseudoconvex CR-3 manifolds is obtained for a given constant negative
scalar curvature.

2. Some basic materials

2.1. Contact metric manifolds

Let M be a smooth 3-manifold. A smooth 1-form α on M is called a contact
form if α ∧ (dα) 6= 0 everywhere on M . A hyperplane subbundle H of the
tangent bundle TM , which is given by H = kerα, is induced by contact form
α. The Reeb vector field ξ is the unique vector field satisfying α(ξ) = 1 and

dα(ξ, )̇ = 0. Then (M ,α) is called a contact manifold. The tangent bundle
TM splits into TM = H ⊕ Rξ. Let X be any vector field on M . Then, the
decomposition of X can be written as

X = XH + fξ,

where f ∈ C∞(M,R) and XH is the horizontal part of X.
If (M,α) is a contact manifold, the pair (H, dα

∣∣
H

) is a symplectic vector
bundle and an almost complex structure JH can be fixed on H, which is com-
patible with dα

∣∣
H

. Since J2
H = −Id, the following eigenspaces decomposition

can be given by:

Λ1
H(M) = H ⊗R C = Λ1,0

H (M)⊕ Λ0,1
H (M),

where

Λ1,0
H (M) = {Z ∈ H ⊗R C | JHZ = iZ},

Λ0,1
H (M) = {Z ∈ H ⊗R C | JHZ = −iZ}.

The complexification of ΛsH(M) is decomposed as follows

ΛsH(M) =
∑
q+r=s

Λq,rH (M),

where Λq,r(M)H = span{u∧v |u ∈ Λq
(
Λ1,0
H (M)

)
, v ∈ Λr

(
Λ0,1
H (M)

)
}. Also, JH

can be extended to an endomorphism J of the tangent bundle TM by setting
Jξ = 0. At this point J2 = −Id + α ⊗ ξ is satisfied. With this in mind, gα
defines a Riemannian metric on TM given by

gα(X,Y ) = dα(X, JY ) + α(X)α(Y ).
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The metric gα is called a Webster metric and is said to be associated to α.
Moreover, gα satisfies the following relations:

gα(X,Y ) = α(X), gα(JX, Y ) = dα(X,Y ),

gα(JX, JY ) = gα(X,Y )− α(X)α(Y ),

for any X,Y ∈ χ(M). We call (M, gα, α, ξ, J) as a contact metric manifold.
For more information see [1, 2, 21].

On the contact metric manifold (M, gα, α, ξ, J), the generalized Tanaka-
Webster connection ∇TW is given by:

∇TWX Y = ∇XY −
(
∇Xα

)
(Y )ξ − α(X)∇Y ξ − α(X)α(Y ),

where ∇ is the Levi-Civita connection and X,Y ∈ χ(M) [25]. Also, the gener-
alized Tanaka-Webster connection ∇TW satisfies ∇TWα = 0 and ∇TW gα = 0.
Moreover, if J is integrable, i.e., ∇TWJ = 0, then the contact metric manifold
(M, gα, α, ξ, J) is called a strictly pseudoconvex CR manifold [20,21].

2.2. Spinc-structure and Dirac operator

A complex vector bundle S can be constructed by a given Spinc representa-
tion κ3 : Spinc(3) → Aut(∆3) and denoted by S = PSpinc(3) ×κ3

∆3. Also this
complex vector bundle is called a spinor bundle for a given Spinc-structure on
M [8]. κ : R3 → End(S) is a linear map satisfying the following conditions:

κ(v)∗ + κ(v) = 0, κ(v)∗κ(v) = |v|2I
for every v ∈ R3. Then,

ρ : Λ2(T ∗M)→ End(S)

can be defined on the frames by extending map κ : TM → End(S) of κ. Let
{e1, e2, e3} be an orthonormal frame on an open subset U ⊂M . Then

α =
∑
i<j

αije
i ∧ ej → ρ(α) =

∑
i<j

αijκ(ei)κ(ej).

ρ can be extended to complex valued 2-forms such that

ρ : Λ2(T ∗M)⊗ C→ End(S).

A connection ∇A on S, which is called a spinor covariant derivative operator, is
obtained by using an iR-valued connection 1-form A ∈ Ω(M, iR) and the Levi-
Civita connection ∇ on M . At this point the definition of the Dirac operator
DA : Γ(S)→ Γ(S) can be given by

DA(Ψ) =

3∑
i=1

κ(ei)∇AeiΨ,

where {e1, e2, e3} is any positively oriented local orthonormal frame of TM
[14]. A Spinc-structure is needed to describe the Dirac operator on contact
metric manifold. It is known that any contact metric manifold admits a canon-
ical Spinc-structure. By using this canonical Spinc-structure, an associated
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canonical spinor bundle can be constructed and described by the following
isomorphism:

S ∼= Ω0,∗(M),

where Ω0,∗(M) is the direct sum of Ω(M)0,0 ⊕ Ω(M)0,1. Furthermore, on this
spinor bundle, the Clifford multiplication “·” is given by:

V ·Ψ =
√

2

(
(V 0,1
H )∗ ∧Ψ− ι(V 0,1

H )Ψ

)
+ i(−1)deg Ψ+1η(V )ψ,

where VH denotes the horizontal part of V . According to these multiplication
one can easily obtain ξψ = i(−1)degψ+1ψ.

The spinor bundle S carries a natural Hermitian metric, denoted by
(
,
)

and for any vector field X and spinor field Ψ,Φ satisfies [11]

(1)
(
X ·Ψ,Φ

)
= −

(
Ψ, X · Φ

)
.

Also, the norm ‖ · ‖ in the Hilbert space L2 is defined as [8, 22],

(2) ‖Ψ‖2 =

√∫
M

|Ψ|2dvol.

On the 2n+1-dimensional contact metric manifold (M, gα, α, ξ, J) equipped
with a Spinc-structure, each unitary connection A on L induces a spinorial
connection ∇A on S with the generalized Tanaka-Webster connection ∇TW .
Then according to ∇A the Kohn-Dirac operator DA

H is defined as follows [21]:

(3) DA
H =

2n∑
i=1

κ(ei)
(
∇Aei),

where {ei} is a local orthonormal frame of H. The Dirac operator DA is defined
by [21]

(4) DA = DA
H + ξ · ∇Aξ .

Also, by considering strictly pseudoconvex CR manifolds with Ω0,∗
H (M) as-

sociated spinor bundle the Dirac type operator is defined as follows:
Let

(5) ∂H : Ω0,r
H (M) −→ Ω0,r+1

H (M), ∂
∗
H : Ω0,r

H (M) −→ Ω0,r−1
H

respectively given by:

∂H =

n∑
i=1

Z
∗
i ∧∇TWZi

, ∂
∗
H = −

n∑
i=1

ι(Zi)
∗ ∧∇TW

Zi
,

where ∇TW is the extension of the generalized Webster-Tanaka connection to
Ω0,∗
H (M) and ι is the contraction operator.

It follows from (3) that we have on Ω0,∗
H (M)

(6) H =
√

2

n∑
r=0

(
∂H + ∂

∗
H

)
+

n∑
r=0

(−1)r+1
√
−1 · ∇TWξ .
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Since S ∼= Ω0,∗
H (M), (4) coincides with (6).

3. Seiberg-Witten-like equations on 3-manifolds

In this section, we write down Seiberg-Witten-like equation on 3-manifold
M . Then, we get explicit forms of these equations on R3.

Definition. Let M be a 3-manifold endowed with a Spinc(3)-structure and
A be the fixed connection on U(1)-principal bundle. Then, for any Ψ ∈ Γ(S)
Seiberg-Witten-like equations are defined by

DA(Ψ) = 0,

FA =
1

4
σ(Ψ),

where FA = dA is the imaginary-valued curvature 2-form of the connection A
in the PS1-bundle associated with the Spinc-structure.

Moreover, the well known formula called the Schrödinger-Lichnerowicz for-
mula is given by [8, 22]

(7) D∗ADAΨ = (∇A)∗∇AΨ +
s

4
Ψ +

1

2
dA ·Ψ,

where s is the scalar curvature of M , (∇A)∗ is the adjoint of the covariant
derivative operator ∇A and D∗A is the adjoint of DA.

3.1. Seiberg-Witten-like equations on R3

Let κ : R3 → End(C2) be the Spinc(3)-structure which is defined on gener-
ators {e1, e2, e3} by the followings:

κ(e1) =

[
0 1
−1 0

]
, κ(e2) =

[
0 i
i 0

]
κ(e3) =

[
i 0
0 −i

]
, κ(dα) =

[
i 0
0 −i

]
,

where dα = e1 ∧ e2. Note that there is no decomposition of spinor space over
R3 contrary to the case R4 [8]. The Spinc-connection ∇A on R3 is given by

∇Aj Ψ =
∂Ψ

∂xj
+

1

2
AjΨ,

where Aj : R3 → iR for j = 1, 2, 3 and Ψ : R3 → C2 are smooth maps. Then
the associated connection on the line bundle PS1 is the connection 1-form and
represented by

A =

3∑
i=1

Aidx
i ∈ Ω(R3, iR)
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and its curvature 2-form is given by

FA =

3∑
i<j

Fijdx
i ∧ dxj ∈ Ω2(R3, iR)

where Fij =
(
∂Aj

∂xi
− ∂Ai

∂xj

)
for i, j = 1, 2, 3. Then the Dirac operator DA :

Γ(S)→ Γ(S) on R3 can be written with respect to given Spinc- connection ∇A
as follows:

DAΨ =

3∑
i=1

κ(ei)∇AeiΨ.

Therefore, the Dirac equation in the flat case is given by

DA(Ψ) = κ(e1)∇Ae1Ψ + κ(e2)∇Ae2Ψ + κ(e3)∇Ae3Ψ

=

3∑
i=1

κ(ei)
(
∇AeiΨ

)
=

3∑
i=1

κ(ei)

[
∂ψ1

∂xi
+ 1

2Aiψ1
∂ψ2

∂xi
+ 1

2Aiψ2

]

=

 i
(
∂ψ2

∂x2
+ ∂ψ1

∂x3

)
+ ∂ψ2

∂x1
+ 1

2

(
A1ψ2 + i

(
A3ψ1 +A2ψ2)

)
i
(
− ∂ψ2

∂x3
+ ∂ψ1

∂x2

)
− ∂ψ1

∂x1
+ 1

2

(
−A1ψ1 + i

(
A2ψ1 −A3ψ2)

).
Let us consider the complexified space Λ2(R3)⊗C and FA be the curvature

form of the imaginary valued connection 1-form A. Then,

FA =

3∑
i<j

Fijdx
i ∧ dxj .

The curvature equation is defined by

FA =
1

4
σ(Ψ),

where σ(Ψ) is an imaginary valued 2-form defined by the formula

σ(Ψ)(X,Y ) =
(
X · Y ·Ψ,Ψ

)
+
〈
X,Y

〉
|Ψ|2

for any Ψ ∈ Γ(S). The map σ : Γ(S)→ Ω1(M, iR) is called a quadratic map.
The explicit form of the second equation can be expressed as follows:

F12 = − i
4

(
|ψ1|2 − |ψ2|2

)
,

F13 =
i

4

(
ψ2ψ1 + ψ1ψ2

)
,

F23 =
1

4

(
ψ2ψ1 − ψ1ψ2

)
.
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4. Seiberg-Witten-like functional

The Energy functional consistent with the 3-dimensional Seiberg-Witten-like
equations is defined by

E(A,Ψ) =

∫
M

(
|DAΨ|2 + |FA −

1

4
σ(Ψ)|2

)
dvol.

Note that solutions of 3-dimensional Seiberg-Witten-like equations are zeros
of Energy functional. In this section, we obtain some useful identities related
with spinors and their image under the quadratic map σ. With the aid of the
following lemma we obtain another form of Seiberg-Witten-like functional and
we get a bound for the solutions of Seiberg-Witten-like equations.

Lemma 4.1. Let κ : TM → End(S) be a Spinc-structure on a compact oriented
smooth 3-dimensional Riemannian manifold M. Then, the following equalities
hold

(8)
(
σ(Ψ)Ψ, Ψ

)
=
(
σ(Ψ), σ(Ψ)

)
= |Ψ|4,

where Ψ ∈ Γ(S) and σ(Ψ) ∈ Ω2(M, iR).

Lemma 4.1 can be proved with an easy computation.
In the following, we give a bound to the negative constant scalar curvature

of (M, g) by using the usual Laplacian on defined as follows [8, 22],

(9) ∆|Ψ|2 = 2
(
(∇A)∗∇AΨ,Ψ

)
− 2
(
∇AΨ,∇AΨ

)
,

where Ψ ∈ Γ(S) and (∇A)∗ is the adjoint of the covariant derivative operator
∇A.

Lemma 4.2. Let (A,Ψ) be a solution of DAΨ = 0, FA = 1
4σ(Ψ) over a

compact smooth 3-dimensional Riemannian manifold (M, g) with a negative
constant scalar curvature s. Then, at each point

|Ψ(x)|2

2
≤ −smin, where smin = min{s(m) : m ∈M}.

Proof. At a point x where |Ψ(x)|2 attains its maximum we have 0 ≤ ∆|Ψ|2.
Then

0 ≤ ∆|Ψ|2 = 2
(
(∇A)∗∇AΨ,Ψ

)
− 2
(
∇AΨ,∇AΨ

)
≤ 2
(
(∇A)∗∇AΨ,Ψ

)
= 2
(
D∗ADAΨ− s

4
Ψ− 1

2
dA ·Ψ,Ψ

)
=
(
− s

2
Ψ− dA ·Ψ, Ψ

)
,

= −s
2
|Ψ|2 −

(
dA ·Ψ, Ψ

)
= −s

2
|Ψ|2 − 1

4

(
σ(Ψ)Ψ, Ψ

)
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= −s
2
|Ψ|2 − 1

4
|Ψ|4.

Now, if |Ψ(x)|2 > 0, then 0 ≤ − s2 |Ψ|
2− 1

4 |Ψ|
4
max and 1

2 |Ψ(xmax)|2 ≤ −smin. �

Lemma 4.3. Under the same conditions as in Lemma 4.2, the following in-
equality is satisfied

|FA| ≤ 1
2 |s|.

Proof.

|FA|2 = |1
4
σ(Ψ)|2 =

(1

4
σ(Ψ),

1

4
σ(Ψ)

)
=

1

16

(
σ(Ψ), σ(Ψ)

)
=

1

16
|Ψ|4.

As a result, |FA| = 1
4 |Ψ|

2 ≤ −s2 ≤
1
2 |s|. �

Since 3-dimensional Hyperbolic space is a Riemannian manifold with neg-
ative constant curvature and it satisfies Lemma 4.2 and Lemma 4.3 [9]. In
addition, manifolds of negative constant curvature are given in [13].

Lemma 4.4. On the compact oriented smooth 3-dimensional Riemannian man-
ifold (M, g), by considering Seiberg-Witten-like equation:

(10) DAΨ = 0, FA =
1

4
σ(Ψ),

the Seiberg-Witten-like functional is obtained as follows

E(A,Ψ) =

∫
M

(
|FA|2 + |∇AΨ|2 +

s

4
|Ψ|2 +

1

16
|Ψ|4

)
dvol.

Proof. Using the Schrodinger-Lichnerowicz formula given in (7), we have

(11)

∫
M

|DAΨ|2dvol =

∫
M

[
|∇AΨ|2 +

s

4
|Ψ|2 +

(1

2
dA ·Ψ,Ψ

)]
dvol.

Since FA and σ(Ψ) are 2-forms with purely imaginary values, calculating their
length amounts to

|FA −
1

4
σ(Ψ)|2 = |FA|2 −

1

2

(
dA ·Ψ,Ψ

)
+

1

16
|σ(Ψ)|2.

This implies

E(A,Ψ) =

∫
M

[
|FA −

1

4
σ(Ψ)|2 + |DAΨ|2

]
dvol

=

∫
M

[
|FA|2 + |∇AΨ|2 +

s

4
|Ψ|2 +

1

16
|Ψ|4

]
dvol.(12)

�

In 3-dimensional case i.e., M = R3, the following lemma shows that L2-
solutions of these equations are trivial.
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Lemma 4.5. Let A ∈ Ω1(R3, iR) and Ψ ∈ C∞(R3,C2) the following equations
are satisfied:

∇A1 Ψ +∇A2 Ψ +∇A3 Ψ = 0,

F12 = − i
4

(|ψ1|2 − |ψ2|2) = −1

4
Ψ∗KΨ,

F13 =
i

4
(ψ2ψ1 + ψ1ψ2) =

1

4
Ψ∗JΨ,(13)

F23 =
1

4
(ψ2ψ1 − ψ1ψ2) = −1

4
Ψ∗IΨ,

where

I =

[
0 1
−1 0

]
, J =

[
0 i
i 0

]
, K =

[
i 0
0 −i

]
.

Then

(1) If Ψ ∈ L2, then Ψ ≡ 0.
(2) If E(A,Ψ) <∞, then Ψ ≡ 0 and FA ≡ 0.

Proof. Let

(14) ∆ = −
3∑
i=1

∂2

(∂xi)2

be the usual Laplacian on R3. At first we claim that

(15) ∆|Ψ|2 = −2

3∑
i=1

∂

∂xi
Re
(
Ψ, ∇Ai Ψ

)
.

To proof our claim we compute

∂

∂xi
|Ψ|2 = ∂i(ψ1ψ1 + ψ2ψ2)

= ψ1∂iψ1 + ψ1∂iψ1 + ψ2∂iψ2 + ψ2∂iψ2,(16)

and (
Ψ, ∇Ai Ψ

)
=
(
Ψ, ∂iΨ +

1

2
AiΨ

)
= ψ1(∂iψ1 +

1

2
Aiψ1) + ψ2(∂iψ2 +

1

2
Aiψ2)

= ψ1∂iψ1 + ψ2∂iψ2 +
1

2
Ai(|ψ1|2 + |ψ2|2).(17)

By inserting (17) into the following equality

2Re
(
Ψ, ∇Ai Ψ

)
=
(
Ψ, ∇Ai Ψ

)
+
(
Ψ, ∇Ai Ψ

)
= ψ1∂iψ1 + ψ1∂iψ1 + ψ2∂iψ2 + ψ2∂iψ2(18)
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is obtained. At the end, by comparing (16) with (18), one gets the following
equality:

∂

∂xi
|Ψ|2 = 2Re

(
Ψ, ∇Ai Ψ

)
.

Also, this equality can be written as in the following

− ∂2

(∂xi)2
|Ψ|2 = −2

∂

∂xi
Re
(
Ψ, ∇Ai Ψ

)
,

which means that (14) equals to (15).
Moreover, one can show that

(19)
∂

∂xi

(
Re
(
Ψ, ∇Ai Ψ

))
= |∇Ai Ψ|2 +Re

(
Ψ, ∇Ai ∇Ai Ψ

)
.

To obtain this, firstly, the right side of (19) is computed:

2
∂

∂xi
Re
(
Ψ, ∇Ai Ψ

)
=

∂

∂xi
(ψ1∂iψ1 + ψ1∂iψ1 + ψ2∂iψ2 + ψ2∂iψ2)

= ψ1∂i∂iψ1 + ∂iψ1∂iψ1 + ψ1∂i∂iψ1 + ∂iψ1∂iψ1

+ ψ2∂i∂iψ2 + ∂iψ2∂iψ2 + ψ2∂i∂iψ2 + ∂iψ2∂iψ2(20)

= ψ1∂i∂iψ1 + ψ1∂i∂iψ1 + ψ2∂i∂iψ2 + ψ2∂i∂iψ2

+ ∂iψ1∂iψ1 + ∂iψ2∂iψ2.

Explicit form of |∇Ai Ψ|2 is obtained as in the following:

2|∇Ai Ψ|2 = 2
(
∇Ai Ψ, ∇Ai Ψ

)
= 2
(
∂iΨ, ∂iΨ

)
+
(
∂iΨ, AiΨ

)
+
(
AiΨ, ∂iΨ

)
+

1

2

(
AiΨ, AiΨ

)
(21)

= 2∂iψ1∂iψ1 + 2∂iψ2∂iψ2 + 2Re
(
∂iΨ, AiΨ

)
+

1

2
|AiΨ|2.

Also,

∇Ai ∇Ai Ψ = (∂i +
1

2
Ai)(∂iΨ +

1

2
AiΨ)

= ∂i∂iΨ +
1

2
∂i(AiΨ) +

1

2
Ai∂iΨ +

1

4
A2
iΨ

= ∂i∂iΨ +
1

2
Ai∂iΨ +

1

2
Ψ∂iAi +

1

2
Ai∂iΨ +

1

4
A2
iΨ(22)

= ∂i∂iΨ +Ai∂iΨ +
1

2
Ψ∂iAi +

1

4
A2
iΨ

= ∂i∂iΨ +Ai∂iΨ +
1

2
Ψ∂iAi −

1

4
|Ai|2Ψ.

Hermitian inner product Ψ with (22) is calculated by(
Ψ, ∇Ai ∇Ai Ψ

)
=
(
Ψ, ∂i∂iΨ

)
+Ai

(
Ψ, ∂iΨ

)
+

1

2
∂iAi

(
Ψ, Ψ

)
− 1

4
|Ai|2

(
Ψ, Ψ

)
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= ψ1∂i∂iΨ1 + ψ2∂i∂iψ2 +Ai
(
Ψ, ∂iΨ

)
+

1

2
∂iAi|Ψ|2 −

1

4
|AiΨ|2.(23)

The real part of (23) is

2Re
(
Ψ, ∇Ai ∇Ai Ψ

)
=
(
Ψ,∇Ai ∇Ai Ψ

)
+
(
Ψ, ∇i∇iΨ

)
= ψ1∂i∂iΨ1 + ψ2∂i∂iψ2 +Ai

(
Ψ, ∂iΨ

)
+

1

2
∂iAi|Ψ|2

− 1

4
|AiΨ|2 + ψ1∂i∂iΨ1 + ψ2∂i∂iψ2 −Ai

(
Ψ, ∂iΨ

)
(24)

− 1

2
∂iAi|Ψ|2 −

1

4
|AiΨ|2.

Since

Ai
(
Ψ, ∂iΨ

)
=
(
AiΨ, ∂iΨ

)
=
(
−AiΨ, ∂iΨ

)
= −

(
AiΨ, ∂iΨ

)
= −

(
∂iΨ, AiΨ

)
,(25)

Re
(
Ai
(
Ψ, ∂iΨ

))
= −Re

(
∂iΨ, AiΨ

)
= −Re

(
∂iΨ, AiΨ

)
(26)

are obtained. Inserting (26) in (24), one has

2Re
(
Ψ, ∇i∇iΨ

)
= ψ1∂i∂iψ1 + ψ1∂i∂iψ1 + ψ2∂i∂iψ2 + ψ2∂i∂iψ2

− 2Re
(
∂iΨ, AiΨ

)
− 1

2
|AiΨ|2.

Since (20) is the sum of (21) and (24), (19) is proved.
Considering the scalar curvature s = 0 and Dirac equation DAΨ = 0 in (7),

we get

(∇Ai )∗∇Ai Ψ +
1

2
dA ·Ψ = 0.

Since (∇A)∗ = −∇A [8, 22], we obtain

(27) ∇Ai ∇Ai Ψ =
1

2
FA ·Ψ.

Inserting (27) in (19), we get the following equation:

∆|Ψ|2 = −2

3∑
i=1

|∇Ai Ψ|2 +Re
(
Ψ, ρ(FA)Ψ

)
= −2

3∑
i=1

|∇Ai Ψ|2 − 2Re
(
Ψ, F12KΨ

)
−Re

(
Ψ, F13JΨ

)
−Re

(
Ψ, F23IΨ

)
.(28)

By using (13) in the following Hermitian inner product
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(1)
(
Ψ, F12KΨ

)
=
(

Ψ,
(
− 1

4
Ψ∗KΨ

)
KΨ

)
=
(
− 1

4
Ψ∗KΨ

)(
Ψ,KΨ

)
= − i

4
(|ψ1|2 − |ψ2|2)i(|ψ1|2 − |ψ2|2)

=
1

4
|Ψ∗KΨ|2

is obtained. Also the following holds

−Re
(
Ψ, F12KΨ

)
= −1

4
|Ψ∗KΨ|2.(29)

Similarly, by using (13), one can obtain

(2)
(
Ψ, F13JΨ

)
=
(

Ψ,
(1

4
Ψ∗JΨ

)
JΨ
)

=
(1

4
Ψ∗JΨ

)(
Ψ, JΨ

)
=
i

4
(ψ2ψ1 + ψ1ψ2)i(ψ1ψ2 + ψ2ψ1)

= −1

4
|Ψ∗JΨ|2

and then

(30) −Re
(
Ψ, F13JΨ

)
=

1

4
|Ψ∗JΨ|2.

At the end, with the aid of (13) the following identity holds

(3)
(
Ψ, F23IΨ

)
=
(

Ψ,
(
− 1

4
Ψ∗IΨ

)
IΨ
)

= −
(1

4
Ψ∗IΨ

)(
Ψ, IΨ

)
=

1

4
(ψ2ψ1 − ψ1ψ2)(ψ1ψ2 − ψ2ψ1)

=
1

4
|Ψ∗IΨ|2.

Then,

(31) −Re
(
Ψ, F23IΨ

)
= −1

4
|Ψ∗IΨ|2

is obtained. By inserting (29), (30), (31) into (28), one has

(32) ∆|Ψ|2 = −2

3∑
i=1

|∇Ai Ψ|2 − 1

4
|Ψ∗KΨ|2 +

1

4
|Ψ∗JΨ|2 − 1

4
|Ψ∗IΨ|2.

Accordingly, the last three terms are obtained as:

|Ψ∗KΨ|2 − |Ψ∗JΨ|2 + |Ψ∗IΨ|2

= (|ψ1|2 − |ψ2|2)2 + (ψ2ψ1 + ψ1ψ2)2 + (ψ2ψ1 − ψ1ψ2)2
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= |ψ1|4 − 2|ψ1|2|ψ2|2 + |ψ2|4 − ψ2
2
ψ2

1 + 2|ψ2|2|ψ1|2 − ψ1
2
ψ2

2

+ ψ1
2
ψ2

2 + 2|ψ1|2|ψ2|2 + ψ2
2
ψ2

1

= (|ψ1|2 + |ψ2|2)2

= |Ψ|4.(33)

After inserting (33) in (32), we get ∆|Ψ|2 ≤ 0 which means that the function

x −→ |Ψ(x)|2 : R3 −→ R

is subharmonic on R3 [22]. As a result, |Ψ(x)|2 satisfies the mean value in-
equality for subharmonic functions. According to the Mean Value Theorem for
subharmonic function, the following inequality is satisfied for any r > 0 and
any x ∈ R3,

|Ψ(x)|2 ≤ 3

4πr3

∫
Br(x)

|Ψ(x)|2dvol,

where Br(x) is the closed ball of radius r about x [7, 12, 23]. If Ψ ∈ L2,∫
R3 |Ψ(x)|2dvol <∞. Hence, L2-norm of Ψ is finite. Denoting the value of this

integral by κ, we obtain

|Ψ(x)|2 ≤ 3κ

4πr3
.

Since the L2-norm of Ψ is finite it follows, by taking the limit r → ∞, that
Ψ(x) = 0 for all x ∈ R3.

To prove second part, similar way is used. By inserting (33) into (32), one
can provide

(34) ∆|Ψ|2 = −2

3∑
i=1

|∇Ai Ψ|2 − 1

4
|Ψ|4.

By means of standard identity from vector calculus, one has

∆
(
f · g

)
= f ·∆g − 2∇f · ∇g + g ·∆f.

Taking g = f , one can provide

∆
(
f2
)

= −2∇f · ∇f + 2f ·∆f,

so

∆|Ψ|4 = ∆
(
|Ψ|2

)2

= −2
(
∇|Ψ|2

)
.
(
∇|Ψ|2

)
+ 2|Ψ|2∆|Ψ|2

then

∆|Ψ|4 = −2
(
∇|Ψ|2

)
.
(
∇|Ψ|2

)
− 4|Ψ|2

3∑
i=1

|∇Ai Ψ|2 − 1

2
|Ψ|6.
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Consequently, ∆|Ψ|4 ≤ 0 on R3 so x −→ |Ψ(x)|4 is subharmonic on R3. Thus,
for every r > 0 and every x ∈ R3,

(35) |Ψ(x)|4 ≤ 3

4πr3

∫
Br(x)

|Ψ(x)|4dvol.

The assumptions E(A,Ψ) <∞ can be written as in the following

(36) E(A,Ψ) =

∫
M

(
|FA|2 + |∇AΨ|2 +

R

4
|Ψ|2 +

1

16
|Ψ|4

)
dvol <∞.

From (36), one has

(37)

∫
R3

|Ψ|4dvol <∞.

This means that Ψ ≡ 0 on R3. Consequently under the assumption E(A,Ψ) <
∞, FA ≡ 0 since Ψ ≡ 0. �

5. A non-trivial solution to Seiberg-Witten-like equations on
3-dimensional contact metric manifolds

In this section, Seiberg-Witten-like equations on the 3-dimensional strictly
pseudoconvex CR-3 manifolds are written and a global solution to these equa-
tions is given.

On the 3-dimensional strictly pseudoconvex CR-3 manifolds, the spinor bun-
dle can be decomposed as follows:

S ∼= Λ0,1
H (M)⊕ Λ0,0

H (M),

where Λ0,1
H (M) is the eigenspace corresponding to the eigenvalue i of the map-

ping κ(dα) : S→ S and has dimension 1, Λ0,0
H (M) is the eigenspace correspond-

ing to the eigenvalue −i of the mapping κ(dα) : S → S and has dimension 1.

If Ψ0 ∈ S, isomorphic to the constant function 1 ∈ Λ0,0
H (M), then Ψ0 denotes

the spinor corresponding to the constant function 1 in the chosen coordinates

Ψ0 =

[
0
1

]
.

By using the expression of σH(Ψ) in the local coordinates and dα ·Ψ0 = −iΨ0,
the following identity is obtained:

σH(Ψ0) = idα.

On the subbundle H,the Ricci form ρH is defined by

(38) ρH(X,Y ) = Ric(X, JHY ) = gα(X, JHRicY )

for any X,Y ∈ Γ(H). Since on the strictly pseudoconvex CR manifold, the
almost complex structure JH is complex,

(39) Ric(X,Y ) = iρH(X,Y )

for any X,Y ∈ Γ(H).
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Proposition 5.1. Suppose that ρH be a Ricci form on the subbundle H and
sH be a scalar curvature of H. Then, one can satisfy the following identity:

(40) ρ = −sH
2
dα.

Proof. According to the local coordinates, the almost complex structure J is
given as follows:

J =

0 −1 0
1 0 0
0 0 0

 .
Since J ◦Ric = Ric ◦ J commutative, the reduced form of the Ric is

Ric =

R11 0 0
0 R11 0
0 0 0

 .
By using (38) the explicit form of ρH is:

(41) ρH = −R11e
1 ∧ e2 = −sH

2
dα. �

In the following theorem, a special solution of Seiberg-Witten-like equations
is given on the 3-dimensional strictly pseudoconvex contact metric manifold.

Theorem 5.2. Let (M, gα, α, ξ, J) be a strictly pseudoconvex CR-3 mani-
fold. Then, for a given negative and constant scalar curvature sH , (A,Ψ =√
−2sHΨ0) is the solution of Seiberg-Witten-like equations.

Proof. By using Ψ we get σH(Ψ) = idα. Also it can be written as

(42) σH(Ψ) = −2isHdα.

By using (39) and (42), one can satisfy,

(43) FA = Ric = iρH = −isH
2
dα =

1

4
σH(Ψ).

Since σH(Ψ) = σ(Ψ),

FA =
1

4
σ(Ψ)(44)

is satisfied.
The following is easily hold. By using the spinor field Ψ0 corresponding to

the constant function 1, one can obtain

(45) H(1) =
√

2

n∑
r=0

(
∂H + ∂

∗
H

)
(1) +

n∑
r=0

(−1)r+1
√
−1 · ∇TWξ (1) = 0.

This means that DA0
Ψ = DA0

H Ψ + ξ · ∇A0

ξ Ψ = 0.

As a result, (A,Ψ =
√
−2sHΨ0) is the solution of Seiberg-Witten-like equa-

tions on the strictly pseudoconvex CR-3 manifold. �
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A 3-dimensional Hiperbolic space with a negative and constant scalar cur-
vature can be given for the Theorem (5.2) (see [9]).
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