Bull. Korean Math. Soc. **56** (2019), No. 6, pp. 1551–1567

https://doi.org/10.4134/BKMS.b181273 pISSN: 1015-8634 / eISSN: 2234-3016

SEIBERG-WITTEN-LIKE EQUATIONS ON THE STRICTLY PSEUDOCONVEX CR-3 MANIFOLDS

SERHAN EKER

ABSTRACT. In this paper, Seiberg-Witten-like equations are written down on 3-manifolds. Then, it has been proved that the L^2 -solutions of these equations are trivial on \mathbb{R}^3 . Finally, a global solution is obtained on the strictly pseudoconvex CR-3 manifolds for a given constant negative scalar curvature.

1. Introduction

The Seiberg-Witten equations, which are consisted of the curvature and Dirac equation, carries subtle information that can be used to investigate the topology and geometry of the manifolds [10, 22, 27]. Although these equations are defined in 4-manifolds, they are also handled by many authors on higher dimensional manifolds [4-6, 19, 22]. This paper is mainly interested with the Seiberg-Witten-like equations on 3-manifold. Seiberg-Witten-like equations on 3-manifold are studied to obtain the equations of motion of U(1) Chern-Simons theory coupled to a massless spinor field and investigated their moduli space of the gauge equivalence classes of their solutions [3]. Also, these equations are studied on a compact 3-manifold with boundary to show that solution space of these equations is a Banach manifold [17]. As mentioned above, Seiberg-Witten-like equations have been investigated by many authors in three dimensions [10, 15, 18, 24, 26]. In this paper, these equations are investigated with a different perspective. Just as in the 4-manifolds, there is a need for a Spin^cstructure in order to be able to construct spinor bundle on 3-manifolds. With all these, the Dirac equation can be defined on the spinor bundle. However, the definition of the curvature equation differs from the curvature equation which are defined on 4-manifolds. On 4-manifolds the curvature equation is defined as being dependent on the self-duality concept and also in higher dimensions the curvature equation is defined with the help of the generalised self-duality

Received December 28, 2018; Revised May 11, 2019; Accepted August 5, 2019. 2010 Mathematics Subject Classification. Primary 53C27, 15A66, 34L40. Key words and phrases. Spin and Spin^c geometry, Clifford algebras, spinors, Seiberg-Witten equations.

concept [4–6]. Since in 3-manifolds self-duality concept is meaningless, the curvature equation is defined independently from the self-duality concept.

This paper is organized as follows. At first, some basic facts concerning contact metric manifold, Spin^c -structure and Dirac operator are introduced. Then, in Section 3, Seiberg-Witten-like equations on 3-manifolds are defined and some useful identities are obtained to determine Seiberg-Witten-like functional. Therefore, a bound to the solutions of these equations with the approach given in [16] is obtained. Furthermore, it is proved that L^2 -solutions of these equations are trivial on \mathbb{R}^3 . Finally, a global solution to these equations on the strictly pseudoconvex CR-3 manifolds is obtained for a given constant negative scalar curvature.

2. Some basic materials

2.1. Contact metric manifolds

Let M be a smooth 3-manifold. A smooth 1-form α on M is called a contact form if $\alpha \wedge (d\alpha) \neq 0$ everywhere on M. A hyperplane subbundle H of the tangent bundle TM, which is given by $H = ker\alpha$, is induced by contact form α . The Reeb vector field ξ is the unique vector field satisfying $\alpha(\xi) = 1$ and $d\alpha(\xi,\dot) = 0$. Then (M,α) is called a contact manifold. The tangent bundle TM splits into $TM = H \oplus \mathbb{R}\xi$. Let X be any vector field on M. Then, the decomposition of X can be written as

$$X = X_H + f\xi$$

where $f \in C^{\infty}(M, \mathbb{R})$ and X_H is the horizontal part of X.

If (M, α) is a contact manifold, the pair $(H, d\alpha|_H)$ is a symplectic vector bundle and an almost complex structure J_H can be fixed on H, which is compatible with $d\alpha|_H$. Since $J_H^2 = -I_d$, the following eigenspaces decomposition can be given by:

$$\Lambda^1_H(M) = H \otimes_{\mathbb{R}} \mathbb{C} = \Lambda^{1,0}_H(M) \oplus \Lambda^{0,1}_H(M),$$

where

$$\Lambda_H^{1,0}(M) = \{ Z \in H \otimes_{\mathbb{R}} \mathbb{C} \mid J_H Z = iZ \},$$

$$\Lambda_H^{0,1}(M) = \{ Z \in H \otimes_{\mathbb{R}} \mathbb{C} \mid J_H Z = -iZ \}.$$

The complexification of $\Lambda_H^s(M)$ is decomposed as follows

$$\Lambda_H^s(M) = \sum_{q+r=s} \Lambda_H^{q,r}(M),$$

where $\Lambda^{q,r}(M)_H = span\{u \wedge v \mid u \in \Lambda^q(\Lambda_H^{1,0}(M)), v \in \Lambda^r(\Lambda_H^{0,1}(M))\}$. Also, J_H can be extended to an endomorphism J of the tangent bundle TM by setting $J\xi = 0$. At this point $J^2 = -Id + \alpha \otimes \xi$ is satisfied. With this in mind, g_α defines a Riemannian metric on TM given by

$$g_{\alpha}(X,Y) = d\alpha(X,JY) + \alpha(X)\alpha(Y).$$

The metric g_{α} is called a Webster metric and is said to be associated to α . Moreover, g_{α} satisfies the following relations:

$$g_{\alpha}(X,Y) = \alpha(X), \ g_{\alpha}(JX,Y) = d\alpha(X,Y),$$

$$g_{\alpha}(JX,JY) = g_{\alpha}(X,Y) - \alpha(X)\alpha(Y),$$

for any $X, Y \in \chi(M)$. We call $(M, g_{\alpha}, \alpha, \xi, J)$ as a contact metric manifold. For more information see [1, 2, 21].

On the contact metric manifold $(M, g_{\alpha}, \alpha, \xi, J)$, the generalized Tanaka-Webster connection ∇^{TW} is given by:

$$\nabla_X^{TW} Y = \nabla_X Y - (\nabla_X \alpha)(Y)\xi - \alpha(X)\nabla_Y \xi - \alpha(X)\alpha(Y),$$

where ∇ is the Levi-Civita connection and $X,Y \in \chi(M)$ [25]. Also, the generalized Tanaka-Webster connection ∇^{TW} satisfies $\nabla^{TW}\alpha = 0$ and $\nabla^{TW}g_{\alpha} = 0$. Moreover, if J is integrable, i.e., $\nabla^{TW}J = 0$, then the contact metric manifold $(M, g_{\alpha}, \alpha, \xi, J)$ is called a strictly pseudoconvex CR manifold [20, 21].

2.2. $Spin^c$ -structure and Dirac operator

A complex vector bundle \mathbb{S} can be constructed by a given Spin^c representation $\kappa_3: \mathrm{Spin}^c(3) \to Aut(\Delta_3)$ and denoted by $\mathbb{S} = P_{\mathrm{Spin}^c(3)} \times_{\kappa_3} \Delta_3$. Also this complex vector bundle is called a spinor bundle for a given Spin^c -structure on M [8]. $\kappa: \mathbb{R}^3 \to End(\mathbb{S})$ is a linear map satisfying the following conditions:

$$\kappa(v)^* + \kappa(v) = 0, \quad \kappa(v)^* \kappa(v) = |v|^2 \mathbb{I}$$

for every $v \in \mathbb{R}^3$. Then,

$$\rho: \Lambda^2(T^*M) \to End(\mathbb{S})$$

can be defined on the frames by extending map $\kappa: TM \to End(\mathbb{S})$ of κ . Let $\{e_1, e_2, e_3\}$ be an orthonormal frame on an open subset $U \subset M$. Then

$$\alpha = \sum_{i < j} \alpha_{ij} e^i \wedge e^j \to \rho(\alpha) = \sum_{i < j} \alpha_{ij} \kappa(e_i) \kappa(e_j).$$

 ρ can be extended to complex valued 2-forms such that

$$\rho: \Lambda^2(T^*M) \otimes \mathbb{C} \to End(\mathbb{S}).$$

A connection ∇^A on \mathbb{S} , which is called a spinor covariant derivative operator, is obtained by using an $i\mathbb{R}$ -valued connection 1-form $A \in \Omega(M, i\mathbb{R})$ and the Levi-Civita connection ∇ on M. At this point the definition of the Dirac operator $D_A : \Gamma(\mathbb{S}) \to \Gamma(\mathbb{S})$ can be given by

$$D_A(\Psi) = \sum_{i=1}^3 \kappa(e_i) \nabla_{e_i}^A \Psi,$$

where $\{e_1, e_2, e_3\}$ is any positively oriented local orthonormal frame of TM [14]. A Spin^c-structure is needed to describe the Dirac operator on contact metric manifold. It is known that any contact metric manifold admits a canonical Spin^c-structure. By using this canonical Spin^c-structure, an associated

canonical spinor bundle can be constructed and described by the following isomorphism:

$$\mathbb{S} \cong \Omega^{0,*}(M),$$

where $\Omega^{0,*}(M)$ is the direct sum of $\Omega(M)^{0,0} \oplus \Omega(M)^{0,1}$. Furthermore, on this spinor bundle, the Clifford multiplication "·" is given by:

$$V \cdot \Psi = \sqrt{2} \left((V_H^{0,1})^* \wedge \Psi - \iota(V_H^{0,1}) \Psi \right) + i(-1)^{\deg \Psi + 1} \eta(V) \psi,$$

where V_H denotes the horizontal part of V. According to these multiplication one can easily obtain $\xi \psi = i(-1)^{\deg \psi + 1} \psi$.

The spinor bundle $\mathbb S$ carries a natural Hermitian metric, denoted by (,) and for any vector field X and spinor field Ψ, Φ satisfies [11]

(1)
$$(X \cdot \Psi, \Phi) = -(\Psi, X \cdot \Phi).$$

Also, the norm $\|\cdot\|$ in the Hilbert space L^2 is defined as [8,22],

(2)
$$\|\Psi\|^2 = \sqrt{\int_M |\Psi|^2 dvol}.$$

On the 2n+1-dimensional contact metric manifold $(M, g_{\alpha}, \alpha, \xi, J)$ equipped with a Spin^c-structure, each unitary connection A on L induces a spinorial connection ∇^A on $\mathbb S$ with the generalized Tanaka-Webster connection ∇^{TW} . Then according to ∇^A the Kohn-Dirac operator D_H^A is defined as follows [21]:

(3)
$$D_H^A = \sum_{i=1}^{2n} \kappa(e_i) (\nabla_{e_i}^A),$$

where $\{e_i\}$ is a local orthonormal frame of H. The Dirac operator D_A is defined by [21]

$$(4) D_A = D_H^A + \xi \cdot \nabla_{\varepsilon}^A.$$

Also, by considering strictly pseudoconvex CR manifolds with $\Omega_H^{0,*}(M)$ associated spinor bundle the Dirac type operator is defined as follows:

Let

(5)
$$\overline{\partial}_H: \Omega_H^{0,r}(M) \longrightarrow \Omega_H^{0,r+1}(M), \ \overline{\partial}_H^*: \Omega_H^{0,r}(M) \longrightarrow \Omega_H^{0,r-1}$$
 respectively given by:

$$\overline{\partial}_H = \sum_{i=1}^n \overline{Z}_i^* \wedge \nabla_{\overline{Z}_i}^{TW}, \ \overline{\partial}_H^* = -\sum_{i=1}^n \iota(\overline{Z}_i)^* \wedge \nabla_{\overline{Z}_i}^{TW},$$

where ∇^{TW} is the extension of the generalized Webster-Tanaka connection to $\Omega_H^{0,*}(M)$ and ι is the contraction operator.

It follows from (3) that we have on $\Omega_H^{0,*}(M)$

(6)
$$\mathcal{H} = \sqrt{2} \sum_{r=0}^{n} \left(\overline{\partial}_{H} + \overline{\partial}_{H}^{*} \right) + \sum_{r=0}^{n} (-1)^{r+1} \sqrt{-1} \cdot \nabla_{\xi}^{TW}.$$

Since $\mathbb{S} \cong \Omega_H^{0,*}(M)$, (4) coincides with (6).

3. Seiberg-Witten-like equations on 3-manifolds

In this section, we write down Seiberg-Witten-like equation on 3-manifold M. Then, we get explicit forms of these equations on \mathbb{R}^3 .

Definition. Let M be a 3-manifold endowed with a $\mathrm{Spin}^c(3)$ -structure and A be the fixed connection on U(1)-principal bundle. Then, for any $\Psi \in \Gamma(\mathbb{S})$ Seiberg-Witten-like equations are defined by

$$D_A(\Psi) = 0,$$

 $F_A = \frac{1}{4}\sigma(\Psi),$

where $F_A = dA$ is the imaginary-valued curvature 2-form of the connection A in the P_{S^1} -bundle associated with the Spin^c-structure.

Moreover, the well known formula called the Schrödinger-Lichnerowicz formula is given by [8,22]

(7)
$$D_A^* D_A \Psi = (\nabla^A)^* \nabla^A \Psi + \frac{s}{4} \Psi + \frac{1}{2} d_A \cdot \Psi,$$

where s is the scalar curvature of M, $(\nabla^A)^*$ is the adjoint of the covariant derivative operator ∇^A and D_A^* is the adjoint of D_A .

3.1. Seiberg-Witten-like equations on \mathbb{R}^3

Let $\kappa : \mathbb{R}^3 \to End(\mathbb{C}^2)$ be the Spin^c(3)-structure which is defined on generators $\{e_1, e_2, e_3\}$ by the followings:

$$\kappa(e_1) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \ \kappa(e_2) = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$$
$$\kappa(e_3) = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \ \kappa(d\alpha) = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix},$$

where $d\alpha = e^1 \wedge e^2$. Note that there is no decomposition of spinor space over \mathbb{R}^3 contrary to the case \mathbb{R}^4 [8]. The Spin^c-connection ∇^A on \mathbb{R}^3 is given by

$$\nabla_{j}^{A}\Psi = \frac{\partial\Psi}{\partial x_{j}} + \frac{1}{2}A_{j}\Psi,$$

where $A_j: \mathbb{R}^3 \to i\mathbb{R}$ for j=1,2,3 and $\Psi: \mathbb{R}^3 \to \mathbb{C}^2$ are smooth maps. Then the associated connection on the line bundle P_{S^1} is the connection 1-form and represented by

$$A = \sum_{i=1}^{3} A_i dx^i \in \Omega(\mathbb{R}^3, i\mathbb{R})$$

and its curvature 2-form is given by

$$F_A = \sum_{i < j}^3 F_{ij} dx^i \wedge dx^j \in \Omega^2(\mathbb{R}^3, i\mathbb{R})$$

where $F_{ij} = \left(\frac{\partial A_j}{\partial x_i} - \frac{\partial A_i}{\partial x_j}\right)$ for i, j = 1, 2, 3. Then the Dirac operator $D_A : \Gamma(\mathbb{S}) \to \Gamma(\mathbb{S})$ on \mathbb{R}^3 can be written with respect to given Spin^c- connection ∇^A as follows:

$$D_A \Psi = \sum_{i=1}^3 \kappa(e_i) \nabla_{e_i}^A \Psi.$$

Therefore, the Dirac equation in the flat case is given by

$$\begin{split} D_A(\Psi) &= \kappa(e_1) \nabla_{e_1}^A \Psi + \kappa(e_2) \nabla_{e_2}^A \Psi + \kappa(e_3) \nabla_{e_3}^A \Psi \\ &= \sum_{i=1}^3 \kappa(e_i) \bigg(\nabla_{e_i}^A \Psi \bigg) \\ &= \sum_{i=1}^3 \kappa(e_i) \left[\frac{\partial \psi_1}{\partial x_i} + \frac{1}{2} A_i \psi_1 \right] \\ &= \left[i \bigg(\frac{\partial \psi_2}{\partial x_2} + \frac{\partial \psi_1}{\partial x_3} \bigg) + \frac{\partial \psi_2}{\partial x_1} + \frac{1}{2} \bigg(A_1 \psi_2 + i \Big(A_3 \psi_1 + A_2 \psi_2 \Big) \bigg) \right] \\ &= \left[i \bigg(-\frac{\partial \psi_2}{\partial x_3} + \frac{\partial \psi_1}{\partial x_2} \bigg) - \frac{\partial \psi_1}{\partial x_1} + \frac{1}{2} \bigg(-A_1 \psi_1 + i \Big(A_2 \psi_1 - A_3 \psi_2 \Big) \bigg) \right]. \end{split}$$

Let us consider the complexified space $\Lambda^2(\mathbb{R}^3) \otimes \mathbb{C}$ and F_A be the curvature form of the imaginary valued connection 1-form A. Then,

$$F_A = \sum_{i < j}^3 F_{ij} dx^i \wedge dx^j.$$

The curvature equation is defined by

$$F_A = \frac{1}{4}\sigma(\Psi),$$

where $\sigma(\Psi)$ is an imaginary valued 2-form defined by the formula

$$\sigma(\Psi)(X,Y) = (X \cdot Y \cdot \Psi, \Psi) + \langle X, Y \rangle |\Psi|^2$$

for any $\Psi \in \Gamma(\mathbb{S})$. The map $\sigma : \Gamma(\mathbb{S}) \to \Omega^1(M, i\mathbb{R})$ is called a quadratic map. The explicit form of the second equation can be expressed as follows:

$$F_{12} = -\frac{i}{4} \Big(|\psi_1|^2 - |\psi_2|^2 \Big),$$

$$F_{13} = \frac{i}{4} \Big(\overline{\psi_2} \psi_1 + \overline{\psi_1} \psi_2 \Big),$$

$$F_{23} = \frac{1}{4} \Big(\overline{\psi_2} \psi_1 - \overline{\psi_1} \psi_2 \Big).$$

4. Seiberg-Witten-like functional

The Energy functional consistent with the 3-dimensional Seiberg-Witten-like equations is defined by

$$E(A, \Psi) = \int_{M} \left(|D_A \Psi|^2 + |F_A - \frac{1}{4} \sigma(\Psi)|^2 \right) dvol.$$

Note that solutions of 3-dimensional Seiberg-Witten-like equations are zeros of Energy functional. In this section, we obtain some useful identities related with spinors and their image under the quadratic map σ . With the aid of the following lemma we obtain another form of Seiberg-Witten-like functional and we get a bound for the solutions of Seiberg-Witten-like equations.

Lemma 4.1. Let $\kappa:TM\to End(\mathbb{S})$ be a Spin^c-structure on a compact oriented smooth 3-dimensional Riemannian manifold M. Then, the following equalities hold

(8)
$$(\sigma(\Psi)\Psi, \ \Psi) = (\sigma(\Psi), \ \sigma(\Psi)) = |\Psi|^4,$$

where $\Psi \in \Gamma(\mathbb{S})$ and $\sigma(\Psi) \in \Omega^2(M, i\mathbb{R})$.

Lemma 4.1 can be proved with an easy computation.

In the following, we give a bound to the negative constant scalar curvature of (M, g) by using the usual Laplacian on defined as follows [8, 22],

(9)
$$\Delta |\Psi|^2 = 2((\nabla^A)^* \nabla^A \Psi, \Psi) - 2(\nabla^A \Psi, \nabla^A \Psi).$$

where $\Psi \in \Gamma(\mathbb{S})$ and $(\nabla^A)^*$ is the adjoint of the covariant derivative operator ∇^A .

Lemma 4.2. Let (A, Ψ) be a solution of $D_A \Psi = 0$, $F_A = \frac{1}{4}\sigma(\Psi)$ over a compact smooth 3-dimensional Riemannian manifold (M, g) with a negative constant scalar curvature s. Then, at each point

$$\frac{|\Psi(x)|^2}{2} \le -s_{\min}, \text{ where } s_{\min} = \min\{s(m) : m \in M\}.$$

Proof. At a point x where $|\Psi(x)|^2$ attains its maximum we have $0 \le \Delta |\Psi|^2$. Then

$$0 \leq \Delta |\Psi|^2 = 2((\nabla^A)^* \nabla^A \Psi, \Psi) - 2(\nabla^A \Psi, \nabla^A \Psi)$$

$$\leq 2((\nabla^A)^* \nabla^A \Psi, \Psi)$$

$$= 2(D_A^* D_A \Psi - \frac{s}{4} \Psi - \frac{1}{2} dA \cdot \Psi, \Psi)$$

$$= (-\frac{s}{2} \Psi - dA \cdot \Psi, \Psi),$$

$$= -\frac{s}{2} |\Psi|^2 - (dA \cdot \Psi, \Psi)$$

$$= -\frac{s}{2} |\Psi|^2 - \frac{1}{4} (\sigma(\Psi) \Psi, \Psi)$$

$$= -\frac{s}{2}|\Psi|^2 - \frac{1}{4}|\Psi|^4.$$

Now, if $|\Psi(x)|^2 > 0$, then $0 \le -\frac{s}{2}|\Psi|^2 - \frac{1}{4}|\Psi|_{\max}^4$ and $\frac{1}{2}|\Psi(x_{\max})|^2 \le -s_{\min}$. \square

Lemma 4.3. Under the same conditions as in Lemma 4.2, the following inequality is satisfied

$$|F_A| \leq \frac{1}{2}|s|$$
.

Proof.

$$|F_A|^2 = |\frac{1}{4}\sigma(\Psi)|^2 = (\frac{1}{4}\sigma(\Psi), \frac{1}{4}\sigma(\Psi))$$
$$= \frac{1}{16}(\sigma(\Psi), \sigma(\Psi))$$
$$= \frac{1}{16}|\Psi|^4.$$

As a result, $|F_A| = \frac{1}{4} |\Psi|^2 \le \frac{-s}{2} \le \frac{1}{2} |s|$.

Since 3-dimensional Hyperbolic space is a Riemannian manifold with negative constant curvature and it satisfies Lemma 4.2 and Lemma 4.3 [9]. In addition, manifolds of negative constant curvature are given in [13].

Lemma 4.4. On the compact oriented smooth 3-dimensional Riemannian manifold (M, g), by considering Seiberg-Witten-like equation:

(10)
$$D_A \Psi = 0, \ F_A = \frac{1}{4} \sigma(\Psi),$$

 $the\ Seiberg\text{-}Witten\text{-}like\ functional\ is\ obtained\ as\ follows$

$$E(A, \Psi) = \int_{M} \left(|F_A|^2 + |\nabla^A \Psi|^2 + \frac{s}{4} |\Psi|^2 + \frac{1}{16} |\Psi|^4 \right) dvol.$$

Proof. Using the Schrodinger-Lichnerowicz formula given in (7), we have

(11)
$$\int_{M} |D_{A}\Psi|^{2} dvol = \int_{M} \left[|\nabla^{A}\Psi|^{2} + \frac{s}{4} |\Psi|^{2} + \left(\frac{1}{2} dA \cdot \Psi, \Psi\right) \right] dvol.$$

Since F_A and $\sigma(\Psi)$ are 2-forms with purely imaginary values, calculating their length amounts to

$$|F_A - \frac{1}{4}\sigma(\Psi)|^2 = |F_A|^2 - \frac{1}{2}(dA \cdot \Psi, \Psi) + \frac{1}{16}|\sigma(\Psi)|^2.$$

This implies

(12)
$$E(A, \Psi) = \int_{M} \left[|F_{A} - \frac{1}{4}\sigma(\Psi)|^{2} + |D_{A}\Psi|^{2} \right] dvol$$
$$= \int_{M} \left[|F_{A}|^{2} + |\nabla^{A}\Psi|^{2} + \frac{s}{4}|\Psi|^{2} + \frac{1}{16}|\Psi|^{4} \right] dvol.$$

In 3-dimensional case i.e., $M = \mathbb{R}^3$, the following lemma shows that L^2 -solutions of these equations are trivial.

Lemma 4.5. Let $A \in \Omega^1(\mathbb{R}^3, i\mathbb{R})$ and $\Psi \in C^{\infty}(\mathbb{R}^3, \mathbb{C}^2)$ the following equations are satisfied:

$$\nabla_1^A \Psi + \nabla_2^A \Psi + \nabla_3^A \Psi = 0,$$

(13)
$$F_{12} = -\frac{i}{4}(|\psi_1|^2 - |\psi_2|^2) = -\frac{1}{4}\Psi^*K\Psi,$$

$$F_{13} = \frac{i}{4}(\overline{\psi_2}\psi_1 + \overline{\psi_1}\psi_2) = \frac{1}{4}\Psi^*J\Psi,$$

$$F_{23} = \frac{1}{4}(\overline{\psi_2}\psi_1 - \overline{\psi_1}\psi_2) = -\frac{1}{4}\Psi^*I\Psi,$$

where

$$I = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad J = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}, \quad K = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}.$$

Then

- (1) If $\Psi \in L^2$, then $\Psi \equiv 0$. (2) If $E(A, \Psi) < \infty$, then $\Psi \equiv 0$ and $F_A \equiv 0$.

Proof. Let

(14)
$$\Delta = -\sum_{i=1}^{3} \frac{\partial^2}{(\partial x^i)^2}$$

be the usual Laplacian on \mathbb{R}^3 . At first we claim that

(15)
$$\Delta |\Psi|^2 = -2\sum_{i=1}^3 \frac{\partial}{\partial x^i} Re(\Psi, \nabla_i^A \Psi).$$

To proof our claim we compute

(16)
$$\frac{\partial}{\partial x^{i}} |\Psi|^{2} = \partial_{i} (\overline{\psi_{1}} \psi_{1} + \overline{\psi_{2}} \psi_{2})$$
$$= \overline{\psi_{1}} \partial_{i} \psi_{1} + \psi_{1} \partial_{i} \overline{\psi_{1}} + \overline{\psi_{2}} \partial_{i} \psi_{2} + \psi_{2} \partial_{i} \overline{\psi_{2}},$$

and

$$(\Psi, \nabla_i^A \Psi) = (\Psi, \partial_i \Psi + \frac{1}{2} A_i \Psi)$$

$$= \overline{\psi_1} (\partial_i \psi_1 + \frac{1}{2} A_i \psi_1) + \overline{\psi_2} (\partial_i \psi_2 + \frac{1}{2} A_i \psi_2)$$

$$= \overline{\psi_1} \partial_i \psi_1 + \overline{\psi_2} \partial_i \psi_2 + \frac{1}{2} A_i (|\psi_1|^2 + |\psi_2|^2).$$
(17)

By inserting (17) into the following equality

(18)
$$2Re(\Psi, \nabla_i^A \Psi) = (\Psi, \nabla_i^A \Psi) + \overline{(\Psi, \nabla_i^A \Psi)}$$
$$= \overline{\psi_1} \partial_i \psi_1 + \psi_1 \partial_i \overline{\psi_1} + \overline{\psi_2} \partial_i \psi_2 + \psi_2 \partial_i \overline{\psi_2}$$

is obtained. At the end, by comparing (16) with (18), one gets the following equality:

$$\frac{\partial}{\partial x^i} |\Psi|^2 = 2Re\big(\Psi, \ \nabla_i^A \Psi\big).$$

Also, this equality can be written as in the following

$$-\frac{\partial^2}{(\partial x^i)^2}|\Psi|^2 = -2\frac{\partial}{\partial x^i}Re(\Psi, \nabla_i^A\Psi),$$

which means that (14) equals to (15).

Moreover, one can show that

(19)
$$\frac{\partial}{\partial x^i} \left(Re(\Psi, \nabla_i^A \Psi) \right) = |\nabla_i^A \Psi|^2 + Re(\Psi, \nabla_i^A \nabla_i^A \Psi).$$

To obtain this, firstly, the right side of (19) is computed:

$$2\frac{\partial}{\partial x^{i}}Re(\Psi, \nabla_{i}^{A}\Psi) = \frac{\partial}{\partial x^{i}}(\overline{\psi_{1}}\partial_{i}\psi_{1} + \psi_{1}\partial_{i}\overline{\psi_{1}} + \overline{\psi_{2}}\partial_{i}\psi_{2} + \psi_{2}\partial_{i}\overline{\psi_{2}})$$

$$= \overline{\psi_{1}}\partial_{i}\partial_{i}\psi_{1} + \partial_{i}\overline{\psi_{1}}\partial_{i}\psi_{1} + \psi_{1}\partial_{i}\partial_{i}\overline{\psi_{1}} + \partial_{i}\psi_{1}\partial_{i}\overline{\psi_{1}}$$

$$+ \overline{\psi_{2}}\partial_{i}\partial_{i}\psi_{2} + \partial_{i}\overline{\psi_{2}}\partial_{i}\psi_{2} + \psi_{2}\partial_{i}\partial_{i}\overline{\psi_{2}} + \partial_{i}\psi_{2}\partial_{i}\overline{\psi_{2}}$$

$$= \overline{\psi_{1}}\partial_{i}\partial_{i}\psi_{1} + \psi_{1}\partial_{i}\partial_{i}\overline{\psi_{1}} + \overline{\psi_{2}}\partial_{i}\partial_{i}\psi_{2} + \psi_{2}\partial_{i}\partial_{i}\overline{\psi_{2}}$$

$$+ \partial_{i}\psi_{1}\partial_{i}\overline{\psi_{1}} + \partial_{i}\psi_{2}\partial_{i}\overline{\psi_{2}}.$$

Explicit form of $|\nabla_i^A \Psi|^2$ is obtained as in the following:

$$2|\nabla_i^A \Psi|^2 = 2(\nabla_i^A \Psi, \ \nabla_i^A \Psi)$$

(21)
$$= 2(\partial_i \Psi, \ \partial_i \Psi) + (\partial_i \Psi, \ A_i \Psi) + (A_i \Psi, \ \partial_i \Psi) + \frac{1}{2}(A_i \Psi, \ A_i \Psi)$$

$$= 2\partial_i \overline{\psi_1} \partial_i \psi_1 + 2\partial_i \overline{\psi_2} \partial_i \psi_2 + 2Re(\partial_i \Psi, \ A_i \Psi) + \frac{1}{2} |A_i \Psi|^2.$$

Also,

$$\nabla_{i}^{A} \nabla_{i}^{A} \Psi = (\partial_{i} + \frac{1}{2} A_{i})(\partial_{i} \Psi + \frac{1}{2} A_{i} \Psi)$$

$$= \partial_{i} \partial_{i} \Psi + \frac{1}{2} \partial_{i} (A_{i} \Psi) + \frac{1}{2} A_{i} \partial_{i} \Psi + \frac{1}{4} A_{i}^{2} \Psi$$

$$= \partial_{i} \partial_{i} \Psi + \frac{1}{2} A_{i} \partial_{i} \Psi + \frac{1}{2} \Psi \partial_{i} A_{i} + \frac{1}{2} A_{i} \partial_{i} \Psi + \frac{1}{4} A_{i}^{2} \Psi$$

$$= \partial_{i} \partial_{i} \Psi + A_{i} \partial_{i} \Psi + \frac{1}{2} \Psi \partial_{i} A_{i} + \frac{1}{4} A_{i}^{2} \Psi$$

$$= \partial_{i} \partial_{i} \Psi + A_{i} \partial_{i} \Psi + \frac{1}{2} \Psi \partial_{i} A_{i} - \frac{1}{4} |A_{i}|^{2} \Psi.$$

Hermitian inner product Ψ with (22) is calculated by

$$\left(\Psi, \ \nabla_i^A \nabla_i^A \Psi\right) = \left(\Psi, \ \partial_i \partial_i \Psi\right) + A_i \left(\Psi, \ \partial_i \Psi\right) + \frac{1}{2} \partial_i A_i \left(\Psi, \ \Psi\right) - \frac{1}{4} |A_i|^2 \left(\Psi, \ \Psi\right)$$

(23)
$$= \overline{\psi_1} \partial_i \partial_i \Psi_1 + \overline{\psi_2} \partial_i \partial_i \psi_2 + A_i (\Psi, \partial_i \Psi) + \frac{1}{2} \partial_i A_i |\Psi|^2 - \frac{1}{4} |A_i \Psi|^2.$$

The real part of (23) is

$$2Re(\Psi, \nabla_{i}^{A}\nabla_{i}^{A}\Psi) = (\Psi, \nabla_{i}^{A}\nabla_{i}^{A}\Psi) + \overline{(\Psi, \nabla_{i}\nabla_{i}\Psi)}$$

$$= \overline{\psi_{1}}\partial_{i}\partial_{i}\Psi_{1} + \overline{\psi_{2}}\partial_{i}\partial_{i}\psi_{2} + A_{i}(\Psi, \partial_{i}\Psi) + \frac{1}{2}\partial_{i}A_{i}|\Psi|^{2}$$

$$- \frac{1}{4}|A_{i}\Psi|^{2} + \psi_{1}\partial_{i}\partial_{i}\overline{\Psi_{1}} + \psi_{2}\partial_{i}\partial_{i}\overline{\psi_{2}} - A_{i}\overline{(\Psi, \partial_{i}\Psi)}$$

$$- \frac{1}{2}\partial_{i}A_{i}|\Psi|^{2} - \frac{1}{4}|A_{i}\Psi|^{2}.$$
(24)

Since

$$A_{i}(\Psi, \partial_{i}\Psi) = (\overline{A_{i}}\Psi, \partial_{i}\Psi) = (-A_{i}\Psi, \partial_{i}\Psi)$$

$$= -(A_{i}\Psi, \partial_{i}\Psi)$$

$$= -(\overline{\partial_{i}\Psi}, \overline{A_{i}\Psi}),$$
(25)

(26)
$$Re(A_i(\Psi, \partial_i \Psi)) = -Re(\overline{\partial_i \Psi, A_i \Psi})$$
$$= -Re(\partial_i \Psi, A_i \Psi)$$

are obtained. Inserting (26) in (24), one has

$$\begin{split} 2Re\big(\Psi,\ \nabla_i\nabla_i\Psi\big) &= \overline{\psi_1}\partial_i\partial_i\psi_1 + \psi_1\partial_i\partial_i\overline{\psi_1} + \overline{\psi_2}\partial_i\partial_i\psi_2 + \psi_2\partial_i\partial_i\overline{\psi_2} \\ &- 2Re\big(\partial_i\Psi,A_i\Psi\big) - \frac{1}{2}|A_i\Psi|^2. \end{split}$$

Since (20) is the sum of (21) and (24), (19) is proved.

Considering the scalar curvature s=0 and Dirac equation $D_A\Psi=0$ in (7), we get

$$(\nabla_i^A)^* \nabla_i^A \Psi + \frac{1}{2} dA \cdot \Psi = 0.$$

Since $(\nabla^A)^* = -\nabla^A$ [8, 22], we obtain

(27)
$$\nabla_i^A \nabla_i^A \Psi = \frac{1}{2} F_A \cdot \Psi.$$

Inserting (27) in (19), we get the following equation:

$$\Delta |\Psi|^2 = -2\sum_{i=1}^{3} |\nabla_i^A \Psi|^2 + Re(\Psi, \rho(F_A)\Psi)$$
(23)

(28)
$$= -2\sum_{i=1}^{3} |\nabla_i^A \Psi|^2 - 2Re(\Psi, F_{12}K\Psi) - Re(\Psi, F_{13}J\Psi) - Re(\Psi, F_{23}I\Psi).$$

By using (13) in the following Hermitian inner product

(1)
$$(\Psi, F_{12}K\Psi) = (\Psi, (-\frac{1}{4}\Psi^*K\Psi)K\Psi)$$

 $= (-\frac{1}{4}\Psi^*K\Psi)(\Psi, K\Psi)$
 $= -\frac{i}{4}(|\psi_1|^2 - |\psi_2|^2)i(|\psi_1|^2 - |\psi_2|^2)$
 $= \frac{1}{4}|\Psi^*K\Psi|^2$

is obtained. Also the following holds

(29)
$$-Re(\Psi, F_{12}K\Psi) = -\frac{1}{4}|\Psi^*K\Psi|^2.$$

Similarly, by using (13), one can obtain

(2)
$$(\Psi, F_{13}J\Psi) = (\Psi, (\frac{1}{4}\Psi^*J\Psi)J\Psi)$$

 $= (\frac{1}{4}\Psi^*J\Psi)(\Psi, J\Psi)$
 $= \frac{i}{4}(\overline{\psi_2}\psi_1 + \overline{\psi_1}\psi_2)i(\overline{\psi_1}\psi_2 + \overline{\psi_2}\psi_1)$
 $= -\frac{1}{4}|\Psi^*J\Psi|^2$

and then

(30)
$$-Re(\Psi, F_{13}J\Psi) = \frac{1}{4}|\Psi^*J\Psi|^2.$$

At the end, with the aid of (13) the following identity holds

$$(3) (\Psi, F_{23}I\Psi) = (\Psi, (-\frac{1}{4}\Psi^*I\Psi)I\Psi)$$

$$= -(\frac{1}{4}\Psi^*I\Psi)(\Psi, I\Psi)$$

$$= \frac{1}{4}(\overline{\psi_2}\psi_1 - \overline{\psi_1}\psi_2)(\overline{\psi_1}\psi_2 - \overline{\psi_2}\psi_1)$$

$$= \frac{1}{4}|\Psi^*I\Psi|^2.$$

Then,

$$-Re(\Psi, F_{23}I\Psi) = -\frac{1}{4}|\Psi^*I\Psi|^2$$

is obtained. By inserting (29), (30), (31) into (28), one has

(32)
$$\Delta |\Psi|^2 = -2\sum_{i=1}^3 |\nabla_i^A \Psi|^2 - \frac{1}{4} |\Psi^* K \Psi|^2 + \frac{1}{4} |\Psi^* J \Psi|^2 - \frac{1}{4} |\Psi^* I \Psi|^2.$$

Accordingly, the last three terms are obtained as:

$$\begin{split} |\Psi^* K \Psi|^2 - |\Psi^* J \Psi|^2 + |\Psi^* I \Psi|^2 \\ &= (|\psi_1|^2 - |\psi_2|^2)^2 + (\overline{\psi_2} \psi_1 + \overline{\psi_1} \psi_2)^2 + (\overline{\psi_2} \psi_1 - \overline{\psi_1} \psi_2)^2 \end{split}$$

$$= |\psi_{1}|^{4} - 2|\psi_{1}|^{2}|\psi_{2}|^{2} + |\psi_{2}|^{4} - \overline{\psi_{2}}^{2}\psi_{1}^{2} + 2|\psi_{2}|^{2}|\psi_{1}|^{2} - \overline{\psi_{1}}^{2}\psi_{2}^{2}$$

$$+ \overline{\psi_{1}}^{2}\psi_{2}^{2} + 2|\psi_{1}|^{2}|\psi_{2}|^{2} + \overline{\psi_{2}}^{2}\psi_{1}^{2}$$

$$= (|\psi_{1}|^{2} + |\psi_{2}|^{2})^{2}$$

$$(33) \qquad = |\Psi|^{4}.$$

After inserting (33) in (32), we get $\Delta |\Psi|^2 \leq 0$ which means that the function

$$x \longrightarrow |\Psi(x)|^2 : \mathbb{R}^3 \longrightarrow \mathbb{R}$$

is subharmonic on \mathbb{R}^3 [22]. As a result, $|\Psi(x)|^2$ satisfies the mean value inequality for subharmonic functions. According to the Mean Value Theorem for subharmonic function, the following inequality is satisfied for any r > 0 and any $x \in \mathbb{R}^3$,

$$|\Psi(x)|^2 \le \frac{3}{4\pi r^3} \int_{B_r(x)} |\Psi(x)|^2 dvol,$$

where $B_r(x)$ is the closed ball of radius r about x [7, 12, 23]. If $\Psi \in L^2$, $\int_{\mathbb{R}^3} |\Psi(x)|^2 dvol < \infty$. Hence, L^2 -norm of Ψ is finite. Denoting the value of this integral by κ , we obtain

$$|\Psi(x)|^2 \le \frac{3\kappa}{4\pi r^3}.$$

Since the L^2 -norm of Ψ is finite it follows, by taking the limit $r \to \infty$, that $\Psi(x) = 0$ for all $x \in \mathbb{R}^3$.

To prove second part, similar way is used. By inserting (33) into (32), one can provide

(34)
$$\Delta |\Psi|^2 = -2\sum_{i=1}^3 |\nabla_i^A \Psi|^2 - \frac{1}{4} |\Psi|^4.$$

By means of standard identity from vector calculus, one has

$$\Delta(f \cdot g) = f \cdot \Delta g - 2\nabla f \cdot \nabla g + g \cdot \Delta f.$$

Taking g = f, one can provide

$$\Delta(f^2) = -2\nabla f \cdot \nabla f + 2f \cdot \Delta f,$$

so

$$\begin{split} \Delta |\Psi|^4 &= \Delta \Big(|\Psi|^2 \Big)^2 \\ &= -2 \Big(\nabla |\Psi|^2 \Big) . \Big(\nabla |\Psi|^2 \Big) + 2 |\Psi|^2 \Delta |\Psi|^2 \end{split}$$

then

$$\Delta |\Psi|^4 = -2 \Big(\nabla |\Psi|^2\Big). \Big(\nabla |\Psi|^2\Big) - 4 |\Psi|^2 \sum_{i=1}^3 |\nabla_i^A \Psi|^2 - \frac{1}{2} |\Psi|^6.$$

Consequently, $\Delta |\Psi|^4 \leq 0$ on \mathbb{R}^3 so $x \longrightarrow |\Psi(x)|^4$ is subharmonic on \mathbb{R}^3 . Thus, for every r > 0 and every $x \in \mathbb{R}^3$,

$$|\Psi(x)|^4 \leq \frac{3}{4\pi r^3} \int_{B_r(x)} |\Psi(x)|^4 dvol.$$

The assumptions $E(A, \Psi) < \infty$ can be written as in the following

$$(36) \qquad E(A,\Psi) = \int_{M} \Big(|F_{A}|^{2} + |\nabla^{A}\Psi|^{2} + \frac{R}{4} |\Psi|^{2} + \frac{1}{16} |\Psi|^{4} \Big) dvol < \infty.$$

From (36), one has

(37)
$$\int_{\mathbb{R}^3} |\Psi|^4 dvol < \infty.$$

This means that $\Psi \equiv 0$ on \mathbb{R}^3 . Consequently under the assumption $E(A, \Psi) < \infty$, $F_A \equiv 0$ since $\Psi \equiv 0$.

5. A non-trivial solution to Seiberg-Witten-like equations on 3-dimensional contact metric manifolds

In this section, Seiberg-Witten-like equations on the 3-dimensional strictly pseudoconvex CR-3 manifolds are written and a global solution to these equations is given.

On the 3-dimensional strictly pseudoconvex CR-3 manifolds, the spinor bundle can be decomposed as follows:

$$\mathbb{S} \cong \Lambda_H^{0,1}(M) \oplus \Lambda_H^{0,0}(M),$$

where $\Lambda_H^{0,1}(M)$ is the eigenspace corresponding to the eigenvalue i of the mapping $\kappa(d\alpha): \mathbb{S} \to \mathbb{S}$ and has dimension $1, \Lambda_H^{0,0}(M)$ is the eigenspace corresponding to the eigenvalue -i of the mapping $\kappa(d\alpha): \mathbb{S} \to \mathbb{S}$ and has dimension 1. If $\Psi_0 \in \mathbb{S}$, isomorphic to the constant function $1 \in \Lambda_H^{0,0}(M)$, then Ψ_0 denotes the spinor corresponding to the constant function 1 in the chosen coordinates

$$\Psi_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

By using the expression of $\sigma_H(\Psi)$ in the local coordinates and $d\alpha \cdot \Psi_0 = -i\Psi_0$, the following identity is obtained:

$$\sigma_H(\Psi_0) = id\alpha.$$

On the subbundle H, the Ricci form ρ_H is defined by

(38)
$$\rho_H(X,Y) = Ric(X,J_HY) = g_{\alpha}(X,J_HRicY)$$

for any $X,Y\in\Gamma(H)$. Since on the strictly pseudoconvex CR manifold, the almost complex structure J_H is complex,

(39)
$$Ric(X,Y) = i\rho_H(X,Y)$$

for any $X, Y \in \Gamma(H)$.

Proposition 5.1. Suppose that ρ_H be a Ricci form on the subbundle H and s_H be a scalar curvature of H. Then, one can satisfy the following identity:

$$\rho = -\frac{s_H}{2}d\alpha.$$

Proof. According to the local coordinates, the almost complex structure J is given as follows:

$$J = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Since $J \circ Ric = Ric \circ J$ commutative, the reduced form of the Ric is

$$Ric = \begin{bmatrix} R_{11} & 0 & 0 \\ 0 & R_{11} & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

By using (38) the explicit form of ρ_H is:

(41)
$$\rho_H = -R_{11}e^1 \wedge e^2 = -\frac{s_H}{2}d\alpha.$$

In the following theorem, a special solution of Seiberg-Witten-like equations is given on the 3-dimensional strictly pseudoconvex contact metric manifold.

Theorem 5.2. Let $(M, g_{\alpha}, \alpha, \xi, J)$ be a strictly pseudoconvex CR-3 manifold. Then, for a given negative and constant scalar curvature s_H , $(A, \Psi = \sqrt{-2s_H}\Psi_0)$ is the solution of Seiberg-Witten-like equations.

Proof. By using Ψ we get $\sigma_H(\Psi) = id\alpha$. Also it can be written as

(42)
$$\sigma_H(\Psi) = -2is_H d\alpha.$$

By using (39) and (42), one can satisfy,

(43)
$$F_A = Ric = i\rho_H = -i\frac{s_H}{2}d\alpha = \frac{1}{4}\sigma_H(\Psi).$$

Since $\sigma_H(\Psi) = \sigma(\Psi)$,

(44)
$$F_A = \frac{1}{4}\sigma(\Psi)$$

is satisfied.

The following is easily hold. By using the spinor field Ψ_0 corresponding to the constant function 1, one can obtain

(45)
$$\mathcal{H}(1) = \sqrt{2} \sum_{r=0}^{n} (\overline{\partial}_{H} + \overline{\partial}_{H}^{*})(1) + \sum_{r=0}^{n} (-1)^{r+1} \sqrt{-1} \cdot \nabla_{\xi}^{TW}(1) = 0.$$

This means that $D_{A_0}\Psi = D_H^{A_0}\Psi + \xi \cdot \nabla_{\xi}^{A_0}\Psi = 0.$

As a result, $(A, \Psi = \sqrt{-2s_H}\Psi_0)$ is the solution of Seiberg-Witten-like equations on the strictly pseudoconvex CR-3 manifold.

A 3-dimensional Hiperbolic space with a negative and constant scalar curvature can be given for the Theorem (5.2) (see [9]).

References

- [1] H. Baum, Lorentzian twistor spinors and CR-geometry, Differential Geom. Appl. 11 (1999), no. 1, 69-96. https://doi.org/10.1016/S0926-2245(99)00020-0
- [2] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203, Birkhäuser Boston, Inc., Boston, MA, 2002. https://doi.org/10. 1007/978-1-4757-3604-5
- [3] A. L. Carey, B. L. Wang, R. Zhang, and J. McCarthy, Seiberg-Witten monopoles in three dimensions, Lett. Math. Phys. 39 (1997), no. 3, 213-228. https://doi.org/10.1023/A: 1007319915035
- [4] N. Değirmenci and Bulut, Seiberg-Witten-like equations on 6-dimensional SU(3)-manifolds, Balkan J. Geom. Appl. 20 (2015), no. 2, 23–31.
- [5] N. Değirmenci and N. Özdemir, Seiberg-Witten-like equations on 7-manifolds with G₂-structure, J. Nonlinear Math. Phys. 12 (2005), no. 4, 457-461.
- [6] S. Eker, Seiberg-Witten equations on 8-dimensional manifolds with different self-duality, Balkan J. Geom. Appl. 22 (2017), no. 2, 37–43.
- [7] C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972),
 no. 3-4, 137-193. https://doi.org/10.1007/BF02392215
- [8] T. Friedrich, Dirac operators in Riemannian geometry, translated from the 1997 German original by Andreas Nestke, Graduate Studies in Mathematics, 25, American Mathematical Society, Providence, RI, 2000. https://doi.org/10.1090/gsm/025
- [9] T. Jørgensen, Compact 3-manifolds of constant negative curvature fibering over the circle, Ann. of Math. (2) 106 (1977), no. 1, 61-72. https://doi.org/10.2307/1971158
- [10] P. Kronheimer and T. Mrowka, Monopoles and three-manifolds, New Mathematical Monographs, 10, Cambridge University Press, Cambridge, 2007. https://doi.org/10. 1017/CB09780511543111
- [11] H. B. Lawson, Jr. and M.-L. Michelsohn, Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, Princeton, NJ, 1989.
- [12] J. E. Littlewood and G. H. Hardy, Some properties of conjugate functions, J. Reine Angew. Math. 167 (1932), 405-423. https://doi.org/10.1515/crll.1932.167.405
- [13] J. Lohkamp, Metrics of negative Ricci curvature, Ann. of Math. (2) 140 (1994), no. 3, 655-683. https://doi.org/10.2307/2118620
- [14] J. W. Morgan, The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes, 44, Princeton University Press, Princeton, NJ, 1996.
- [15] T. Mrowka, P. Ozsváth, and B. Yu, Seiberg-Witten monopoles on Seifert fibered spaces, Comm. Anal. Geom. 5 (1997), no. 4, 685–791. https://doi.org/10.4310/CAG.1997.v5. n4.a3
- [16] G. L. Naber, Topology, geometry, and gauge fields, Texts in Applied Mathematics, 25, Springer-Verlag, New York, 1997. https://doi.org/10.1007/978-1-4757-2742-5
- [17] T. Nguyen, The Seiberg-Witten equations on manifolds with boundary I: the space of monopoles and their boundary values, Comm. Anal. Geom. 20 (2012), no. 3, 565-676. https://doi.org/10.4310/CAG.2012.v20.n3.a5
- [18] L. I. Nicolaescu, Adiabatic limits of the Seiberg-Witten equations on Seifert manifolds, Comm. Anal. Geom. 6 (1998), no. 2, 331-392. https://doi.org/10.4310/CAG.1998.v6. n2.a5
- [19] _____, Notes on Seiberg-Witten theory, Graduate Studies in Mathematics, 28, American Mathematical Society, Providence, RI, 2000. https://doi.org/10.1090/gsm/028

- [20] R. Petit, Harmonic maps and strictly pseudoconvex CR manifolds, Comm. Anal. Geom. 10 (2002), no. 3, 575-610. https://doi.org/10.4310/CAG.2002.v10.n3.a5
- [21] ______, Spin^c-structures and Dirac operators on contact manifolds, Differential Geom. Appl. **22** (2005), no. 2, 229–252. https://doi.org/10.1016/j.difgeo.2005.01.003
- [22] D. Salamon, Spin geometry and Seiberg-Witten invariants, Citeseer, 1996.
- [23] A. Shkheam, Spaces of harmonic functions and harmonic quasiconformal mappings, Doctoral Thesis, Belgrade, 2013.
- [24] A. I. Stipsicz, Gauge theory and Stein fillings of certain 3-manifolds, Turkish J. Math. 26 (2002), no. 1, 115–130.
- [25] S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1989), no. 1, 349-379. https://doi.org/10.2307/2001446
- [26] C. H. Taubes, The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007), 2117-2202. https://doi.org/10.2140/gt.2007.11.2117
- [27] E. Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), no. 6, 769-796. https://doi.org/10.4310/MRL.1994.v1.n6.a13

SERHAN EKER
DEPARTMENT MATHEMATICS
AĞRI İBRAHIM ÇEÇEN UNIVERSITY
AĞRI 04000, TURKEY

 $Email\ address: {\tt srhaneker@gmail.com}$