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Abstract. In the present paper, we derive two optimal inequalities for

totally real submanifolds and C-totally real submanifolds of LCS-man-
ifolds with respect to Levi-Civita connection and quarter symmetric met-

ric connection by using T. Oprea’s optimization method.

1. Introduction

The concept of Lorentzian concircular structure manifold (LCS-manifolds)
is studied by A. A. Shaikh as a generalization of LP-Sasakian manifolds in [18].
These manifolds are of great interest in the general theory of relativity and
cosmology [19,20]. Many researchers have studied LCS-manifolds (for example
[1, 8–11,21]).

The notion of semi-symmetric linear connection on smooth manifolds is ini-
tiated by Friedmann and Schouten in [4]. Later on, Golab has introduced the
idea of quarter symmetric linear connection on such smooth manifolds as a
generalization of semi-symmetric connection in [6].

In 1890, F. Casorati [2] has defined Casorati curvature and used it at the
place of traditional Gauss curvature. The geometrical importance of the Caso-
rati curvatures has been discussed by many researchers [3,7,12,25]. Due to its
vast geometric significance it drew attention of researchers to construct optimal
inequalities for Casorati curvatures for different set ups [5,13,14,22–24,26,27].

The outline of the present paper is as follows: Section 2 is preliminary in
nature. Section 3 deals with the study of Casorati curvatures. Section 4 derives
the optimal inequalities for totally real submanifolds and C-totally real sub-
manifolds of LCS-manifolds with respect to Levi-Civita connection. Section 5
gives the proof of the geometric inequalities for totally real submanifolds and C-
totally real submanifolds of LCS-manifolds with respect to quarter symmetric
metric connection.
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2. LCS-manifolds and their submanifolds

Definition ([16, 18]). A Lorentzian manifold M together with the unit time-
like concircular vector field ξ, its associated 1-form η and an (1, 1) tensor field
ϕ is said to be a Lorentzian concircular structure manifold (or LCS-manifold).

In an n-dimensional (LCS)n-manifold M , n > 2, the following relations hold
[18]:

η(ξ) = −1, ϕ(ξ) = 0, η ◦ ϕ = 0,(1)

g(ϕX,ϕY ) = g(X,Y ) + η(X)η(Y ), ϕ2X = X + η(X)ξ,(2)

R(X,Y )Z = ϕR(X,Y )Z + (α2 − ρ)

[
g(Y,Z)η(X)− g(X,Z)η(Y )

]
ξ(3)

for any X,Y, Z ∈ Γ(TM).
We consider ∇ is the operator of covariant differentiation with respect to the

Lorentzian metric g and α is a non-zero scalar function satisfying the following:

∇Xα = (Xα) = dα(X) = ρη(X)(4)

for any X ∈ Γ(TM), where ρ is a certain scalar function given by

ρ = −(ξα).(5)

Also,

R(X,Y, Z,W ) = R(X,Y, Z, ϕW ) + (α2 − ρ)

[
g(Y,Z)η(X)

− g(X,Z)η(Y )

]
η(W )(6)

for any X,Y, Z,W ∈ Γ(TM).

Remark 2.1. If we assume that α = 1, then Lorentzian concircular structure
becomes LP-Sasakian structure [15].

Let M be an m-dimensional submanifold of an n-dimensional manifold M
with induced metric g. The Gauss equation is given by [29]

R(X,Y, Z,W ) = R(X,Y, Z,W ) + g(ζ(X,Z), ζ(Y,W ))

− g(ζ(X,W ), ζ(Y,Z))(7)

for any X,Y, Z,W ∈ Γ(TM). Here ζ is the second fundamental form of M in
M .

Definition ([6]). A linear connection ∇̂ in an n-dimensional smooth manifold
M is said to be a quarter symmetric connection if its torsion tensor T is of the
form

T (X,Y ) = ∇̂XY − ∇̂YX − [X,Y ] = η(Y )ϕX − η(X)ϕY,

where η is an 1-form and ϕ is a tensor of type (1, 1).
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Remark 2.2. If we assume that ϕX = X, then the quarter symmetric connec-
tion reduces to semi-symmetric connection.

Definition ([6]). The quarter symmetric connection ∇̂ is said to be a quarter

symmetric metric connection if ∇̂ satisfies the following condition:

(∇̂Xg)(Y,Z) = 0

for any X,Y, Z,W ∈ Γ(TM).

The relation between quarter symmetric metric connection ∇̂ and Riemann-
ian connection ∇ on a (LCS)n-manifold M is given by [11]

∇̂XY = ∇XY + η(Y )ϕX − g(ϕX, Y )ξ.

If R̂ and R are the curvature tensors of a (LCS)n-manifold M with respect

to quarter symmetric metric connection ∇̂ and Riemannian connection ∇, then
[10]

R̂(X,Y, Z,W ) = R(X,Y, Z,W ) + (2α− 1)

[
g(ϕX,Z)g(ϕY,W )

− g(ϕY,Z)g(ϕX,W )

]
+ α

[
η(Y )g(X,W )

− η(X)g(Y,W )

]
η(Z) + α

[
g(Y,Z)η(X)

− g(X,Z)η(Y )

]
η(W )(8)

for any X,Y, Z,W ∈ Γ(TM).
Let M be an m-dimensional submanifold of an n-dimensional (LCS)n-man-

ifold M with respect to quarter symmetric metric connection ∇̂ and ∇̂ be the
induced connection of M associated to the quarter symmetric metric connec-

tion. Also let ζ̂ be the second fundamental form of M with respect to ∇̂. Then
the relation (7) becomes

R̂(X,Y, Z,W ) = R̂(X,Y, Z,W ) + g(ζ̂(X,Z), ζ̂(Y,W ))

− g(ζ̂(X,W ), ζ̂(Y,Z))(9)

for any X,Y, Z,W ∈ Γ(TM). Here R̂ is the curvature tensor of M with re-
spect to the induced connection associated to the quarter symmetric metric
connection.

Definition ([28,29]). (i) A submanifold M of a contact metric manifold M is
said to be anti-invariant if for any X tangent to M , ϕX is normal to M , i.e.,
ϕ(TM) ⊂ T⊥M at every point of M , where T⊥M denotes the normal bundle
of M .



606 M. H. SHAHID AND A. N. SIDDIQUI

(ii) A submanifold M in a contact metric manifold M is called a C-totally
real submanifold in M if every tangent vector of M belongs to the contact
distribution.

Remark 2.3. We note that if a submanifold M of a contact metric manifold
M is normal to the structure vector field ξ, then it is anti-invariant. Also, a
submanifold M in a contact metric manifold M is a C-totally real submanifold
if the structure vector field ξ is normal to M . Therefore it is clear that C-totally
real submanifolds in a contact metric manifold are anti-invariant, as they are
normal to ξ.

For a totally real submanifold and a C-totally real submanifold of a (LCS)n-

manifold M , ζ̂ is given by [10]

ζ̂(X,Y ) = ζ(X,Y ) + η(Y )ϕX(10)

and

ζ̂(X,Y ) = ζ(X,Y ),(11)

respectively, for any X,Y ∈ Γ(TM).

3. Casorati curvatures

Let M be an n-dimensional (LCS)n-manifold and M be an m-dimensional
submanifold in M . Let {E1, . . . , Em} be an orthonormal basis of T℘M and
{Em+1, . . . , En} be an orthonormal basis of T⊥℘ M at any ℘ ∈ M . Then the
scalar curvature σ(℘) at ℘ is given by

σ(℘) =
∑

1≤ı<≤m

K(Eı ∧ E)(12)

and the normalized scalar curvature % is given by

% =
2σ

m(m− 1)
,(13)

where K(Λ) denotes the sectional curvature of the plane section Λ ⊂ T℘M .
The mean curvature vector H is defined as

H =
1

m

m∑
ı,=1

ζ(Eı, Eı)(14)

and the squared norm of mean curvature is given by

‖H‖2 =
1

m2

n∑
a=m+1

( m∑
ı=1

ζaıı
)2
.(15)

We also put

ζaı = g(ζ(Eı, E), Ea), ı,  ∈ {1, 2, . . . ,m}, a ∈ {m+ 1,m+ 2, . . . , n}.
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The Casorati curvature C of M is defined by

C =
1

m

n∑
a=m+1

m∑
ı,=1

(
ζaı
)2
.(16)

Let us assume an r-dimensional subspace Ψ of TM , r ≥ 2, whose orthonor-
mal basis is {E1, E2, . . . , Er}. Then we have

σ(Ψ) =
∑

1≤α<β≤r

K(Eα ∧ Eβ)(17)

and

C(Ψ) =
1

r

n∑
a=m+1

m∑
ı,=1

(
ζaı
)2
,(18)

where σ(Ψ) and C(Ψ) are the scalar curvature and Casorati curvature of Ψ,
respectively.

The following δ-Casorati curvatures δC(m− 1) and δ̂C(m− 1)

[δC(m− 1)]℘ =
1

2
C℘ +

m+ 1

2m
inf{C(Ψ)|Ψ : a hyperplane of T℘M}(19)

and

[δ̂C(m− 1)]℘ = 2C℘ +
2m− 1

2m
sup{C(Ψ)|Ψ : a hyperplane of T℘M}(20)

are known as the normalized δ-Casorati curvatures.

Definition ([14]). A point p ∈ M is said to be an invariantly quasi-umbilical
point if there exist n−m orthogonal unit normal vectors {Em+1, . . . , En} such
that the shape operator with respect to all directions Er have an eigenvalue
of multiplicity m − 1 and that for each Er the distinguished eigendirection is
the same. The submanifold M is said to be an invariantly quasi-umbilical
submanifold if each of its point is an invariantly quasi-umbilical point.

For the main results, we need following lemma:

Lemma 3.1 ([17]). Let M be a Riemannian submanifold of Riemannian man-
ifold (M, g), where g is the induced metric on M from g and ι : M → R is a
differentiable function. If y ∈ M is the solution of the constrained extremum
problem minx∈M ι(x), then

(i) (grad ι)(y) ∈ T⊥y M ;
(ii) the bilinear form  L : TyM × TyM → R;

 L(X,Y ) = g(ς(X,Y ), (grad ι)(y)) +Hessι(X,Y )

is positive semi-definite, where ς is the second fundamental form of M
in M .
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4. Main result 1

Theorem 4.1. Let M be an m-dimensional totally real submanifold in an
n-dimensional (LCS)n-manifold M . Then

(i) The normalized δ-Casorati curvature δC(m− 1) satisfies

% ≤ δC(m− 1)− α2 − ρ
m

.

Furthermore, the equality sign holds if and only if M is an invariantly
quasi-umbilical submanifold with trivial normal connection in M(c),
such that with respect to orthonormal frames of T℘M and T⊥℘ M , re-
spectively, the shape operators Sa ≡ SEa , a ∈ {m+ 1, . . . , n}, are of the
following form

Sm+1 =



β . . . 0 0
0 . . . 0 0
0 . . . 0 0
...

. . .
...

...
0 . . . β 0
0 . . . 0 2β


, Sm+2 = · · · = Sn = 0.(21)

(ii) The normalized δ-Casorati curvature δ̂C(m− 1) satisfies

% ≤ δ̂C(m− 1)− α2 − ρ
m

.

Furthermore, the equality sign holds if and only if M is an invariantly
quasi-umbilical submanifold with trivial normal connection in M(c),
such that with respect to orthonormal frames of T℘M and T⊥℘ M , re-
spectively, the shape operators Sa ≡ SEa , a ∈ {m+ 1, . . . , n}, are of the
following form

Sm+1 =



2β . . . 0 0
0 . . . 0 0
0 . . . 0 0
...

. . .
...

...
0 . . . 2β 0
0 . . . 0 β


, Sm+2 = · · · = Sn = 0.(22)

Proof. Let {E1, . . . , Em} be an orthonormal frame of T℘M and {Em+1, . . . , En}
be an orthonormal frame of T⊥℘ M , ℘ ∈M . From [10], we get

2σ = −(m− 1)(α2 − ρ) +m2||H||2 −mC.
Let us take a quadratic polynomial K in the components of the second funda-
mental form

K =
m(m− 1)

2
C +

m2 − 1

2
C(Ψ) + 2σ − (m− 1)(α2 − ρ).(23)
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Without loss of generality, we assume that Ψ is spanned by E1, . . . , Em−1 and
together (23), we find that

K =
m+ 1

2

n∑
a=m+1

[ m∑
ı,=1

(ζaı)
2 +

m−1∑
ı,=1

(ζaı)
2

]
−

n∑
a=m+1

[ m∑
ı=1

ζaıı

]2
.(24)

Also,

K =

n∑
a=m+1

m−1∑
ı=1

[
m(ζaıı)

2 + (m+ 1)(ζaım)2
](25)

+

n∑
a=m+1

[
2(m+ 1)

∑
1≤ı<≤m−1

(ζaı)
2 − 2

∑
1≤ı<≤m

ζaııζ
a
 +

m− 1

2
(ζamm)2

]

≥
n∑

a=m+1

m−1∑
ı=1

m(ζaıı)
2 +

n∑
a=m+1

[
− 2

∑
1≤ı<≤m

ζaııζ
a
 +

m− 1

2
(ζamm)2

]
.

For a = m+ 1, . . . , n, we suppose the following quadratic form fa : Rm → R,

fa
(
ζa11, . . . , ζ

a
mm

)
=

m−1∑
ı=1

m(ζaıı)
2 − 2

∑
1≤ı<≤m

ζaııζ
a
 +

m− 1

2
(ζamm)2(26)

and the constrained extremum problem min fa subject to the component of
trace H,

ϕ : ζa11 + · · ·+ ζamm = γa,

where γa is a real constant.
The function fa has the following partial derivatives:

∂fa
∂ζa11

= 2mζa11 − 2
∑m
ı=2 ζ

a
ıı,

∂fa
∂ζa22

= 2mζa22 − 2ζa11 − 2
∑m
ı=3 ζ

a
ıı,

...
∂fa

∂ζam−1 m−1
= 2mζam−1 m−1 − 2

∑m−2
ı=1 ζaıı − 2ζamm,

∂fa
∂ζamm

= −2
∑m−1
ı=1 ζaıı + (m− 1)ζamm.

(27)

For an optimal solution
(
ζa11, . . . , ζ

a
mm

)
of the problem in question, the vector

grad fa is normal at ϕ. From (27), we have a following critical point of the
considered problem:

ζa11 = ζa22 = · · · = ζam−1 m−1 =
γa

m+ 1
, ζamm =

2γa

m+ 1
.(28)

Now, we use Lemma 3.1 and for this, we fix an arbitrary point y ∈ ϕ. The
bilinear form

 L : Tyϕ× Tyϕ→ R
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is defined by

 L(X,Y ) = 〈~(X,Y ), (grad fa)(y)〉+Hessfa(X,Y ),

where ~ denotes the second fundamental form of ϕ in Rm and 〈, 〉 denotes the
standard inner product on Rm. So, we have the following:

 L(Z,Z) = − 2(Z1, . . . , Zm−1, Zm)

−m 1 1 . . . 1 1
1 −m 1 . . . 1 1
1 1 −m . . . 1 1
...

...
...

. . .
...

...
1 1 1 . . . −m 1
1 1 1 . . . 1 1−m

2





Z1

Z2

...

...
Zm−1
Zm


= 2(m+ 1)

m−1∑
ı=1

Z2
ı + (m+ 1)Z2

m − 2(Z1 + · · ·+ Zm)2

= 2(m+ 1)

m−1∑
ı=1

Z2
ı + (m+ 1)Z2

m

≥ 0,

where we have used the relation
∑m
ı=1 Z

2
ı = 0 (because a vector Z is tangent

to ϕ at y ∈ ϕ and ϕ is totally geodesic in Rm). Thus, the point (ζa11, . . . , ζ
a
mm)

(see (28)) is a global minimum point. From relations (25) and (28), we get
K ≥ 0 and hence we have

2σ ≤ m(m− 1)C +
m2 − 1

2
C(Ψ)− (m− 1)(α2 − ρ).

Further, we find that

% ≤ C +
(m+ 1)

2m
C(Ψ)− α2 − ρ

m
.

This is the required inequality in (i). The equality in (i) holds if and only if

ζaı = 0, ∀ ı,  ∈ {1, . . . ,m}, ı 6= , a ∈ {m+ 1, . . . , n}(29)

and

ζamm = 2ζa11 = · · · = 2ζam−1 m−1 ∀a ∈ {m+ 1, . . . , n}.(30)

With the help of (29) and (30), we find that the submanifold is invariantly
quasi-umbilical and the shape operators are given by (21).

Similarly, one can easily prove the geometric inequality (ii). �

Corollary 4.2. Let M be an m-dimensional C-totally real submanifold in an
n-dimensional (LCS)n-manifold M . Then:
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(i) The normalized δ-Casorati curvature δC(m− 1) satisfies

% ≤ δC(m− 1).

Furthermore, the equality sign holds if and only if M is an invariantly
quasi-umbilical submanifold with trivial normal connection in M(c),
such that with respect to orthonormal frames of T℘M and T⊥℘ M , re-
spectively, the shape operators Sa ≡ SEa , a ∈ {m + 1, . . . , n}, is given
by (21).

(ii) The normalized δ-Casorati curvature δ̂C(m− 1) satisfies

% ≤ δ̂C(m− 1).

Furthermore, the equality sign holds if and only if M is an invariantly
quasi-umbilical submanifold with trivial normal connection in M(c),
such that with respect to orthonormal frames of T℘M and T⊥℘ M , re-
spectively, the shape operators Sa ≡ SEa , a ∈ {m + 1, . . . , n}, is given
by (22).

5. Main result 2

Let {E1, . . . , En} be an orthonormal basis of the tangent space M and N
be a unit tangent vector at ℘ ∈ M

n
such that E1 = N refracting to Mm,

{E1, . . . , Em} is the orthonormal basis to the tangent space T℘M with respect
to induced quarter symmetric metric connection. Let us denote the scalar
curvature and normalized scalar curvature of M with respect to induced con-
nection associated to the quarter symmetric metric connection by σ̂(℘) at ℘
and %̂, respectively. Then we prove the following:

Theorem 5.1. Let M be an m-dimensional totally real submanifold in an
n-dimensional (LCS)n-manifold M with respect to quarter symmetric metric
connection. Then

(i) The normalized δ-Casorati curvature δC(m− 1) satisfies

%̂ ≤ δC(m− 1)− (2m− 1)α

m(m− 1)
− αη2(N )

m− 1
.

Furthermore, the equality sign holds if and only if M is an invariantly
quasi-umbilical submanifold with trivial normal connection in M(c),
such that with respect to orthonormal frames of T℘M and T⊥℘ M , re-
spectively, the shape operators Sa ≡ SEa , a ∈ {m + 1, . . . , n}, is given
by (21).

(ii) The normalized δ-Casorati curvature δ̂C(m− 1) satisfies

%̂ ≤ δ̂C(m− 1)− (2m− 1)α

m(m− 1)
− αη2(N )

m− 1
.

Furthermore, the equality sign holds if and only if M is an invariantly
quasi-umbilical submanifold with trivial normal connection in M(c),
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such that with respect to orthonormal frames of T℘M and T⊥℘ M , re-
spectively, the shape operators Sa ≡ SEa , a ∈ {m + 1, . . . , n}, is given
by (22).

Proof. Following [10], we have

2σ̂ = −(2m− 1)α−mαη2(N ) +m2||H||2 − ||ζ||2.(31)

Again by using T. Oprea’s optimization technique, one can prove the theorem.
�

Note that the scalar curvature and hence the normalized scalar curvature
of C-totally real submanifold of a (LCS)n-manifold with respect to induced
Levi-Civita connection and induced quarter symmetric metric connection are
identical (see [10]). Thus, we have the following:

Corollary 5.2. Let M be an m-dimensional C-totally real submanifold in an
n-dimensional (LCS)n-manifold M with respect to quarter symmetric metric
connection. Then

(i) The normalized δ-Casorati curvature δC(m− 1) satisfies

%̂ ≤ δC(m− 1).

Furthermore, the equality sign holds if and only if M is an invariantly
quasi-umbilical submanifold with trivial normal connection in M(c),
such that with respect to orthonormal frames of T℘M and T⊥℘ M , re-
spectively, the shape operators Sa ≡ SEa , a ∈ {m + 1, . . . , n}, is given
by (21).

(ii) The normalized δ-Casorati curvature δ̂C(m− 1) satisfies

%̂ ≤ δ̂C(m− 1).

Furthermore, the equality sign holds if and only if M is an invariantly
quasi-umbilical submanifold with trivial normal connection in M(c),
such that with respect to orthonormal frames of T℘M and T⊥℘ M , re-
spectively, the shape operators Sa ≡ SEa , a ∈ {m + 1, . . . , n}, is given
by (22).
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