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CERTAIN RESULTS ON ALMOST KENMOTSU MANIFOLDS
WITH CONFORMAL REEB FOLIATION

GOPAL GHOSH AND PRADIP MAJHI

ABSTRACT. The object of the present paper is to study some curvature
properties of almost Kenmotsu manifolds with conformal Reeb foliation.
Among others it is proved that an almost Kenmotsu manifold with con-
formal Reeb foliation is Ricci semisymmetric if and only if it is an Einstein
manifold. Finally, we study Yamabe soliton in this manifold.

1. Introduction

Geometry of Kenmotsu manifolds was originated by Kenmotsu [13] and be-
came an interesting research area in differential geometry. As a generalization
of Kenmotsu manifolds, the notion of almost Kenmotsu manifolds was first
introduced by Janssens and Vanhecke [12]. In recent years, for some results
regarding such manifolds we refer the reader to ([6-10,14,15], [23-26,28,29]).

A Riemannian manifold M?"*! is called locally symmetric if its curvature
tensor R is parallel, that is, VR = 0, where V is the Levi-Civita connection. It
was introduced by Shirokov in [18]. The notion of semisymmetric manifolds, a
proper generalization of locally symmetric manifolds worked out by Cartan in
1927, is defined by R(X,Y) - R =0, where R(X,Y) acts on R as a derivation.
A complete intrinsic classification of these manifolds was given by Szabo [19].

A Riemannian manifold (M, g),n > 3, is said to be Ricci-semisymmetric if
the Ricci tensor satisfies the curvature condition

R.S =0,

where S is the Ricci tensor.

The class of Ricci-semisymmetric manifolds includes the set of Ricci-sym-
metric manifolds (V.S = 0) as a proper subset. Ricci-semisymmetric manifolds
were investigated by several authors.
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We define the subsets Ugr, Ug of a Riemannian manifold M by Ur = {x €
M:R- WG# Oat z} and Us = {xr € M : S — g # 0 at } respectively,
where G(X,Y)Z = g(Y,Z)X — g(X,2)Y. Evidently we have Us C Ug. A
Riemannian manifold is said to be pseudo-symmetric [20] if at every point of
M the tensor R.R and Q(g, R) are linearly dependent. This is equivalent to

R.R= frQ(g, R)

on Ug, where fg is some function on Ug. Clearly, every semi-symmetric man-
ifold is pseudo-symmetric but the converse is not true, in general [20].

A Riemannian manifold M is said to Ricci pseudo-symmetric if R.S and
Q(g,S) on M are linearly dependent. This is equivalent to

R.S = fsQ(g,5)

on Ug, where fs is a function defined on Ug.

A Riemannian manifold (M, g),n > 3, is said to be Ricci generalized pseu-
dosymmetric [20] if and only if the relation
(1) R.R = LrQ(S,R),

where Lp is a function on the set U = {x € M : Q(S,R) # 0 at z}. A very
important subclass of this class of manifolds realizing the condition

(2) R.R=Q(S,R),
where
(3) QS,R)(U,V,W; X, Y)=(XNsY) R)(UV)W

for all smooth vector fields X,Y,U, V, W on M, and the endomorphism X AgY
defined by

(4) (X AsY)Z =S(Y,2)X — S(X, 2)Y.

On the other hand, it is well known that a Riemannian metric g of an n-
dimensional complete Riemannian manifold (M™, g) is said to be a Yamabe
soliton if it satisfies

() Lvg=(A-r)g

for a constant A € R and a smooth vector field V on M™, where r is the scalar
curvature of g and £ denotes the Lie-derivative operator. A Yamabe soliton is
said to be shrinking, steady or expanding according to A > 0, A=0o0or A <0
respectively and A is said to be the soliton constant.

Given a smooth Riemannian manifold (M™, go), the evolution of the metric
go in time ¢ to g = g(t) through the following equation

0
(6) agt = *T‘gag(o) = 9o,

is known as the Yamabe flow (which was introduced by Hamilton [11]). A
Yamabe soliton is a special soliton of the Yamabe flow that moves by one
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parameter family of diffeomorphisms ¢; generated by a fixed vector field V' on
M™ (for more details see [5]).

The significance of Yamabe flow lies in the fact that it is a natural geometric
deformation to metrics of constant scalar curvature. One notes that Yamabe
flow corresponds to the fast diffusion case of the porous medium equation (the
plasma equation) in mathematical physics. Just as a Ricci soliton is a special
solution of the Ricci flow, a Yamabe soliton is a special solution of the Yamabe
flow that moves by one parameter family of diffeomorphisms ¢; generated by
a fixed vector field V on M, and homotheties, i.e., g(-, 1)) = o (t)p.(t)go.

Given a Yamabe soliton, if V' = Df holds for a smooth function f on M™,
equation (5) becomes

(7) Hessf = %()\—r)g,

where Hessf denotes the Hessian of f and D denotes the gradient operator of
g on M™. In this case f is called the potential function of the Yamabe soliton
and ¢ is said to be a gradient Yamabe soliton. A Yamabe soliton (respectively,
gradient Yamabe soliton) is said to be trivial when V' is Killing (respectively,
f is constant).

Wang [21] studied Yamabe solitons on a three-dimensional Kenmotsu mani-
folds. Bejan et al. studied Ricci soliton in 3-dimensional Paracontact geometry
[1]. Again, Wang et al. studied Ricci soliton on an almost Kenmotsu manifold
([22,27]). Moreover in [9] De and Pathak studied Ricci generalized pseudosym-
metric Kenmotsu manifolds.

Definition ([16]). A vector field X on a contact manifold M is said to be
infinitesimal contact transformation if there exists a smooth function ¢ on M
such that

(£xn)Y =on(Y)
for every smooth vector fields X and Y. If 0 = 0, then X is called a strict
contact infinitesimal transformation.

Motivated by the above studies, in this paper we study almost Kenmotsu
manifolds with conformal Reeb foliation.

The paper is organized as follows: In Section 2, we give a brief account on
almost Kenmotsu manifolds with conformal Reeb foliation. Section 3 deals
with Ricci semisymmetric almost Kenmotsu manifolds with conformal Reeb
foliation, while Section 4 is devoted to study Ricci generalized pseudosymmetric
almost Kenmotsu manifolds with conformal Reeb foliation. Next in Section 5,
we study some transformation on such a manifold. Finally, we study Yamabe
soliton on almost Kenmotsu manifolds with conformal Reeb foliation.

2. Almost Kenmotsu manifolds

A differentiable (2n 4 1)-dimensional manifold M is said to have a (¢, &, n)-
structure or an almost contact structure, if it admits a (1, 1) tensor field ¢, a
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characteristic vector field £ and a 1-form 7 satisfying ([2,3]),

(8) P*=—-T+n®¢ nE) =1,

where I denote the identity endomorphism. Here also ¢¢ = 0 and no ¢ = 0;
both can be derived from (8) easily.

If a manifold M with a (¢, &, n)-structure admits a Reimannian metric g
such that

96X, ¢Y) = g(X,Y) = n(X)n(Y)

for any vector fields X, Y of T, M?"*1 then M is said to have an almost contact
structure (¢,&,n,g). The fundamental 2-form ® on an almost contact metric
manifold is defined by ®(X,Y) = g(X,¢Y) for any X, Y of T,M?"*1. The
condition for an almost contact metric manifold being normal is equivalent to
vanishing of the (1,2)-type torsion tensor Ny, defined by Ny = [¢, ¢] + 2dn ®
&, where [¢, ¢] is the Nijenhuis torsion of ¢. Recently in ([10, 15]), almost
contact metric manifold such that 7 is closed and d® = 2n A ¢ are studied
and they are called almost Kenmotsu manifolds. Obviously, a normal almost
Kenmotsu manifold is a Kenmotsu manifold. Also Kenmotsu manifolds can be
characterized by (Vx¢@)Y = g(¢X,Y)¢ — n(Y)¢pX for any vector fields X,Y.
It is well known [13] that a Kenmotsu manifold M?"*! is locally a warped
product I xy N 27 where N2" is a Kéahler manifold, I is an open interval with
coordinate ¢ and the warping function f, defined by f = ce? for some positive
constant c. Let us denote the distribution orthogonal to £ by D and defined by
D = Ker(n) = Im(¢). In an almost Kenmotsu manifold, since 7 is closed, D is
an intregrable distribution. Let M?"*! be an almost Kenmotsu manifold. We
denote by h = %.,6’5(;5 and [ = R(-,£)¢ on M?"*1. The tensor fields [ and h are
symmetric operators and satisfy the following relations [4]:

(9) he =0, 16 =0, tr(h) =0, tr(h¢) =0, ho + dh = 0,
(10) Vx€=—¢’X — ¢hX (= V£ =0),
(11) Plp — 1 =2(h* — ¢%),

(12) R(X,Y)E =n(X)(Y = ohY) —n(Y)(X — ¢ohX) + (Vyoh) X — (Vxoh)Y

for any vector fields X,Y. The (1,1)-type symmetric tensor field b’ = ho ¢ is
anticommuting with ¢ and h’§ = 0. Also it is clear that ([4,15,29])

(13) h=0sh =0, B = (k+1)¢*(< h? = (k+1)¢?).

In a recent paper [15] Pastore and Saltarelli studied almost Kenmotsu man-
ifolds with conformal Reeb foliation. In this paper they proved that an almost
Kenmotsu manifold satisfying R(X, &) - R = 0, for any smooth vector field X,
is a Kenmotsu manifold of constant curvature —1. It is well known that in the
contact manifold the vanishing of the curvature tensor h = %,E ¢® means that
the Reeb vector field is killing. According to Pastore and Saltarelli [15] for an
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almost Kenmotsu manifolds h = 0 means that the Reeb foliation is conformal.
Here we recall a proposition:

Proposition 2.1 ([15]). Let M?"*1(¢, £, 7, g) be an almost Kenmotsu manifold
with conformal Reeb foliation. Then, for any vector fields X and Y, one has

(14) R(X,Y)§ =n(X)Y —n(Y)X,
(15) R(X ¢ = ¢°X,

(16) R, X)Y = —g(X,Y){+n(Y)X,
(17) S(X, &) = —2nn(X).

3. Ricci semisymmetric almost Kenmotsu manifolds with
conformal Reeb foliation

In this section we characterize Ricci semisymmetric almost Kenmotsu man-
ifolds with conformal Reeb foliation. Suppose the manifold M?"+! is Ricci
semisymmetric almost Kenmotsu manifolds with conformal Reeb foliation.
Then

(R(X,Y) -S)(U,V)=0
which implies
(18) S(R(X, YU, V)+ S(U,R(X,Y)V)=0

for all smooth vector fields X, Y, U, V.
Substituting X = ¢ in (18) yields

(19) S(R(E, YU, V) + S(U,R(£,Y)V) = 0.
Using (16) and (17) in (19) implies
(20)  nO)SEY, V) +n(V)S(U,Y) + 2ng(Y,U)n(V) + 2ng(Y,V)n(U) = 0.
Replacing U by ¢ in (20) yields
S(Y,V) = —2ng(Y,V).

Conversely, let the manifold be an Einstein manifold. Then obviously R-S = 0.
This leads to the following:

Theorem 3.1. Let M*"*1(¢,&,n,9) be an almost Kenmotsu manifold with
conformal Reeb foliation. Then the manifold is Ricci semisymmetric if and
only if the manifold is an Finstein one.

Remark 3.2. The above theorem is the generalization of Theorem 5.2 of [15].
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4. Ricci generalized pseudosymmetric almost Kenmotsu manifolds
with conformal Reeb foliation

Let us consider Ricci generalized pseudosymmetric almost Kenmotsu mani-
folds with conformal Reeb foliation. Then

(R(X,Y) - R)(U,V)W = Lg[((X As Y) - R)(U, V)W,
which implies
R(X,Y)R(U, V)W — R(R(X,Y)U, V)W — R(U,R(X,Y)V)W
—RU,V)R(X, Y)W = Lr[(X As Y)R(U, V)W — R(X As YU, V)W
(21) —R(U,(X Ae YW — R(U,V)(X As Y)W]
for all smooth vector fields X,Y, U, V, W.
Using (4) in (21) we obtain
R(X,Y)R(U, V)W — R(R(X,Y)U, V)W — R(U, R(X,Y))V)W
—R(U,V)R(X,Y)W = LgrR[S(Y, R({U, VW)X — S(X,R(U, VW)Y
—R(S(Y, U)X, V)W + R(S(X,U)Y, V)W — R(U,S(Y, V) X)W
(22) +R(U,S(X, VY)W —S(Y,W)R(U,V)X + S(X,W)R(U,V)Y].
Substituting Y = £ in (22) yields
R(X,)RU, VYW — R(R(X, U, V)W — R(U, R(X, ) V)W
—R(U,V)R(X,§ )W = Lg[S(§, R(U, VW)X — S(X, R(U,V)W)¢
—R(SE, U)X, VW + R(S(X,U)¢, V)W — R(U,S(, V) X)W
(23) +R(U,S(X, V)W — S, W)R(U, V)X + S(X,W)R(U,V)&|.
Using (16) and (17) in (23) we obtain
R(U,V,W, X)¢ —n(R(U, VW)X +n(U)R(X, V)W
—9(X,U)RE V)W +n(V)R(U, X)W — g(X, V)R(U, )W
+n(W)R(U, V)X — g(X, W)R(U,V)§ = =2nLrn(R(U, V)W) X
+n(U)R(X, V)W +n(V)RU, X)W 4+ n(W)R(U, V) X]
—LIS(X,R(U, V)W) — S(X,U)R(E, V)W — S(X,V)R(U, )W
(24)  —S(X,W)R(U,V)E],
where R(U,V,W, X) = g(R(U, V)W, X).
Taking inner product with £ in (24) implies
R(U,V,W, X) = n(R(U,V)W)n(X) + n(U)n(R(X, V)W)
—g9(X, Un(R(E, V)W) +n(V)n(R(U, X)W) — ( V)n(R(U, W)
+n(W)n (R(U V)X) = g(X, W)n(R(U,V)§) = —%LR[W(R(U VI)W)n(X)
+n(U)n(R(X, V)W) +n(V)n(R(U, X)W) +n(W)n(R(U, V) X)]
—L[S(X, R(U VIW) = S(X, U)n(R(E, V)W) = S(X, V)n(R(U,§ W)
(25) =S(X, W)n(R(U,V)E)].
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Putting W = £ in (25) implies
Lg[2nn(R(U,V)X) — S(X,R(U,V)¢)] = 0.
Hence either Lr = 0, or,
2nn(R(U,V)X) — S(X,R(U, V)¢ = 0.
Case 1: Suppose L = 0. Then from (21) it follows that
R-R=0.
Case 2: Suppose
(26) 2nn(R(U,V)X) — S(X,R(U, V)¢ = 0.
Substituting U = £ in (26) and making use of (16), (17) we get
S(X,V)=—-2ng(X,V).

Therefore the manifold becomes an Einstein manifold.

It is known that the Reeb foliation of a (k, u)-almost Kenmotsu manifold
is conformal. Therefore, in view of ([18, Theorem 1.2]), we observe that a
Riemannian semisymmetric almost Kenmotsu manifold with conformal Reeb
foliation is of constant sectional curvature —1.

Thus we can state the following:

Theorem 4.1. A Ricci-generalized pseudosymmetric almost Kenmotsu man-
ifold M*" (¢, &, m,g) with conformal Reeb foliation is of constant sectional
curvature —1 or Einstein.

5. Some transformation in an almost Kenmotsu manifolds with
conformal Reeb foliation

We now consider a transformation p which transform an almost Kenmotsu
structure (¢,&,7,g) with conformal Reeb foliation into another almost Ken-
motsu structure (¢,¢,7,g). We denote by the notation ‘bar’ the geometric
object which are transformed by the transformation p [17].

We first suppose that in an almost Kenmotsu manifold with conformal Reeb
foliation the Riemannian curvature tensor remains invariant under the trans-
formation p.

Thus we have

(27) R(X,Y)Z = R(X,Y)Z

for all smooth vector fields X,Y, Z.

From (27) it follows that
(28) n(R(X,Y)Z) = n(R(X,Y)Z)
for all smooth vector fields X,Y, Z.

Using (14) in (28) yields

(29) 9(X, Z)n(Y) = g(Y, Z)n(X) = n(R(X,Y)Z).
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Putting Y = £ in (29) we obtain

(30) n(€)g(X, Z) = n(X)g(&, Z) = n(©)3(X, Z) — 7(Z)n(X).
Interchanging X and Z in (30) implies

(31) 1(€)9(X, Z2) = n(Z)9(&, X) = n()g(X, Z) — i(X)n(Z).
Subtracting (31) from (30) yields

(32) n(Z)g(&, X) = n(X)g(&, Z2) = n(X)n(Z) — 7(Z)n(X).

Putting Z = £ in (32) implies

(33) 9(& X) = n(X)g(&. &) = 7(X) — 7(&)n(X).

Also S(X,Y) = S(X,Y) and hence S(¢,€) = S(&,€), which implies £ = n(¢).
Using this relation in (33) we obtain

(34) 7(X) = g(&, X).
By virtue of (34) we get from (31)
(35) l9(X, Z) - g(X, Z)n(€) = 0.

This implies
9(X,Z) =g(X, 2)

for all smooth vector fields X, Z provided n(§) # 0.
Hence we can state the following:

Theorem 5.1. In an almost Kenmotsu manifold with conformal Reeb foliation

the transformation p which leaves the curvature tensor invariant and n(€) # 0
15 an tsometry.

Let us now suppose that in an almost Kenmotsu manifold with Reeb folia-
tion, the infinitesimal contact transformation leaves the Ricci tensor invariant.
Then we have

(36) (LvS)(X,Y) =0,

where £ is the lie derivative along V.
Substituting ¥ = £ in (36) we get

(37) (Lv9)(X,€) =0.

Now

(38) (LyS)(X,€) = Ly (5(X,8)) = S(Lv X, &) = S(X, LyE).
Using (17) in (38) yields

(39) 2n(Lyn)(X) + S(X, LyE) = 0.

Putting (Lyn)X = on(X) in (39), we obtain
(40) S(X, £v€) = —2nan(X).
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Replacing X by ¢ in (40) and then using (17) implies

(41) S(&, LvE) = —2no.
Using (17) in (41) we have

(42) n(Ly€) = o.
Again

(43) (Lyn)X = on(X).
Putting X = £ in the above equation we get

(44) (Lyvn)€ =0,
which implies

(45) Ly (1(€)) = n(Lve) = o

Using (42) and (45),
o=0.
Thus we can state the following:

Theorem 5.2. In an almost Kenmotsu manifold with conformal Reeb foliation
the infinitesimal almost contact transformation which leaves the Ricci tensor
imvariant is an infinitesimal strict contact transformation.

6. Yamabe soliton on an almost Kenmotsu manifolds with
conformal Reeb foliation

In this section we characterize Yamabe soliton on an almost Kenmotsu man-
ifolds with conformal Reeb foliation.

Suppose the potential vector field V is pointwise collinear with £, that is,
V =0b€. Then

VxV = Vxb¢
= (XDb)¢ + bV x&
(46) = (Xb)¢ + b(—¢*X).
Now,
(47) (Lvg)(X,Y) = g(VxV,Y) +g(VyV, X).

Using (8) and (46) in (47) we obtain

48)  (Lvg)(X,Y) = (X0)n(Y) + (Yb)n(X) + 2b[g(X, Y) — n(X)n(Y)].
Using (5) in (48) it follows that

(49)  (X0)n(Y) + (Yb)n(X) + 2b[g(X, Y) = n(X)n(Y)] = (A = r)g(X,Y).
Contracting X and Y in (49) yields

(50) (€b) = %(A ~ (24 1) - 2nb.
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Substituting Y = £ in (49) implies

(51) (XB) = [(A =) — A) + 2nJn(X).
Replacing X by £ in (51) we get
(52) (&b) =[N — r)(% — A) + 2nbl.
Therefore, from (50) and (52) we have
(53) [(A—r)(% — )+ 20 = %()\—7‘)(2714—1) ~ onb.
From (53) we obtain
(54) A= (r+2b).
Using (54) in (51) yields
(55) (Xb) = bn(X),
that is,
(56) 9(Db, X) = bg (X, ).
Removing X in the above equation we have

Db = b,
and hence

Db=1V.

Thus we can state the following:

Theorem 6.1. If an almost Kenmotsu manifold M*" (¢, &, n, g) with confor-
mal Reeb foliation admits a Yamabe soliton, then the Potential vector field is
the gradient of the scalar b.
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