DOI QR코드

DOI QR Code

SEIBERG-WITTEN-LIKE EQUATIONS ON THE STRICTLY PSEUDOCONVEX CR-3 MANIFOLDS

  • Eker, Serhan (Department Mathematics Agri Ibrahim Cecen University)
  • Received : 2018.12.28
  • Accepted : 2019.08.05
  • Published : 2019.11.30

Abstract

In this paper, Seiberg-Witten-like equations are written down on 3-manifolds. Then, it has been proved that the $L^2$-solutions of these equations are trivial on ${\mathbb{R}}^3$. Finally, a global solution is obtained on the strictly pseudoconvex CR-3 manifolds for a given constant negative scalar curvature.

Keywords

References

  1. H. Baum, Lorentzian twistor spinors and CR-geometry, Differential Geom. Appl. 11 (1999), no. 1, 69-96. https://doi.org/10.1016/S0926-2245(99)00020-0
  2. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203, Birkhauser Boston, Inc., Boston, MA, 2002. https://doi.org/10.1007/978-1-4757-3604-5
  3. A. L. Carey, B. L.Wang, R. Zhang, and J. McCarthy, Seiberg-Witten monopoles in three dimensions, Lett. Math. Phys. 39 (1997), no. 3, 213-228. https://doi.org/10.1023/A:1007319915035
  4. N. Degirmenci and Bulut, Seiberg-Witten-like equations on 6-dimensional SU(3)-manifolds, Balkan J. Geom. Appl. 20 (2015), no. 2, 23-31.
  5. N. Degirmenci and N. Ozdemir, Seiberg-Witten-like equations on 7-manifolds with $G^2$-structure, J. Nonlinear Math. Phys. 12 (2005), no. 4, 457-461. https://doi.org/10.2991/jnmp.2005.12.4.1
  6. S. Eker, Seiberg-Witten equations on 8-dimensional manifolds with different self-duality, Balkan J. Geom. Appl. 22 (2017), no. 2, 37-43.
  7. C. Fefferman and E. M. Stein, $H^p$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137-193. https://doi.org/10.1007/BF02392215
  8. T. Friedrich, Dirac operators in Riemannian geometry, translated from the 1997 German original by Andreas Nestke, Graduate Studies in Mathematics, 25, American Mathematical Society, Providence, RI, 2000. https://doi.org/10.1090/gsm/025
  9. T. Jrgensen, Compact 3-manifolds of constant negative curvature fibering over the circle, Ann. of Math. (2) 106 (1977), no. 1, 61-72. https://doi.org/10.2307/1971158
  10. P. Kronheimer and T. Mrowka, Monopoles and three-manifolds, New Mathematical Monographs, 10, Cambridge University Press, Cambridge, 2007. https://doi.org/10.1017/CBO9780511543111
  11. H. B. Lawson, Jr. and M.-L. Michelsohn, Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, Princeton, NJ, 1989.
  12. J. E. Littlewood and G. H. Hardy, Some properties of conjugate functions, J. Reine Angew. Math. 167 (1932), 405-423. https://doi.org/10.1515/crll.1932.167.405
  13. J. Lohkamp, Metrics of negative Ricci curvature, Ann. of Math. (2) 140 (1994), no. 3, 655-683. https://doi.org/10.2307/2118620
  14. J. W. Morgan, The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes, 44, Princeton University Press, Princeton, NJ, 1996.
  15. T. Mrowka, P. Ozsvath, and B. Yu, Seiberg-Witten monopoles on Seifert fibered spaces, Comm. Anal. Geom. 5 (1997), no. 4, 685-791. https://doi.org/10.4310/CAG.1997.v5.n4.a3
  16. G. L. Naber, Topology, geometry, and gauge fields, Texts in Applied Mathematics, 25, Springer-Verlag, New York, 1997. https://doi.org/10.1007/978-1-4757-2742-5
  17. T. Nguyen, The Seiberg-Witten equations on manifolds with boundary I: the space of monopoles and their boundary values, Comm. Anal. Geom. 20 (2012), no. 3, 565-676. https://doi.org/10.4310/CAG.2012.v20.n3.a5
  18. L. I. Nicolaescu, Adiabatic limits of the Seiberg-Witten equations on Seifert manifolds, Comm. Anal. Geom. 6 (1998), no. 2, 331-392. https://doi.org/10.4310/CAG.1998.v6.n2.a5
  19. L. I. Nicolaescu, Notes on Seiberg-Witten theory, Graduate Studies in Mathematics, 28, American Mathematical Society, Providence, RI, 2000. https://doi.org/10.1090/gsm/028
  20. R. Petit, Harmonic maps and strictly pseudoconvex CR manifolds, Comm. Anal. Geom. 10 (2002), no. 3, 575-610. https://doi.org/10.4310/CAG.2002.v10.n3.a5
  21. R. Petit, $Spin^c$-structures and Dirac operators on contact manifolds, Differential Geom. Appl. 22 (2005), no. 2, 229-252. https://doi.org/10.1016/j.difgeo.2005.01.003
  22. D. Salamon, Spin geometry and Seiberg-Witten invariants, Citeseer, 1996.
  23. A. Shkheam, Spaces of harmonic functions and harmonic quasiconformal mappings, Doctoral Thesis, Belgrade, 2013.
  24. A. I. Stipsicz, Gauge theory and Stein fillings of certain 3-manifolds, Turkish J. Math. 26 (2002), no. 1, 115-130.
  25. S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1989), no. 1, 349-379. https://doi.org/10.2307/2001446
  26. C. H. Taubes, The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007), 2117-2202. https://doi.org/10.2140/gt.2007.11.2117
  27. E. Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), no. 6, 769-796. https://doi.org/10.4310/MRL.1994.v1.n6.a13