• 제목/요약/키워드: Lipschitz class

검색결과 58건 처리시간 0.027초

WEAK CONVERGENCE FOR INTERATED RANDOM MAPS

  • Lee, Oe-Sook
    • 대한수학회보
    • /
    • 제35권3호
    • /
    • pp.485-490
    • /
    • 1998
  • We consider a class of discrete parameter processes on a locally compact Polish space $S$ arising from successive compositions of strictly stationary Markov random maps on $S$ into itself. Sufficient conditions for the existence of the stationary solution and the weak convergence of the distributions of $\{\Gamma_n \Gamma_{n-1} \cdots \Gamma_0x \}$ are given.

  • PDF

APPLICATION OF FIXED POINT THEOREM FOR UNIQUENESS AND STABILITY OF SOLUTIONS FOR A CLASS OF NONLINEAR INTEGRAL EQUATIONS

  • GUPTA, ANIMESH;MAITRA, Jitendra Kumar;RAI, VANDANA
    • Journal of applied mathematics & informatics
    • /
    • 제36권1_2호
    • /
    • pp.1-14
    • /
    • 2018
  • In this paper, we prove the existence, uniqueness and stability of solution for some nonlinear functional-integral equations by using generalized coupled Lipschitz condition. We prove a fixed point theorem to obtain the mentioned aim in Banach space $X=C([a,b],{\mathbb{R}})$. As application we study some volterra integral equations with linear, nonlinear and single kernel.

GLOBAL REGULARITY OF SOLUTIONS TO QUASILINEAR CONORMAL DERIVATIVE PROBLEM WITH CONTROLLED GROWTH

  • Kim, Do-Yoon
    • 대한수학회지
    • /
    • 제49권6호
    • /
    • pp.1273-1299
    • /
    • 2012
  • We prove the global regularity of weak solutions to a conormal derivative boundary value problem for quasilinear elliptic equations in divergence form on Lipschitz domains under the controlled growth conditions on the low order terms. The leading coefficients are in the class of BMO functions with small mean oscillations.

Lp-SOLUTIONS FOR REFLECTED BSDES WITH TIME DELAYED GENERATORS

  • Zhou, Qing
    • 대한수학회보
    • /
    • 제53권3호
    • /
    • pp.793-819
    • /
    • 2016
  • In this paper, we establish the existence and uniqueness of the solution for a class of reflected backward stochastic differential equations with time delayed generator (RBSDEs with time delayed generator, in short) in the case when the terminal value and the obstacle process are $L^p$-integrable with p ${\in}$]1, 2[ for a sufficiently small Lipschitz constant of the generator and the time horizon T.

CONTROLLABILITY FOR SEMILINEAR FUNCTIONAL INTEGRODIFFERENTIAL EQUATIONS

  • Jeong, Jin-Mun;Kim, Han-Geul
    • 대한수학회보
    • /
    • 제46권3호
    • /
    • pp.463-475
    • /
    • 2009
  • This paper deals with the regularity properties for a class of semilinear integrodifferential functional differential equations. It is shown the relation between the reachable set of the semilinear system and that of its corresponding linear system. We also show that the Lipschitz continuity and the uniform boundedness of the nonlinear term can be considerably weakened. Finally, a simple example to which our main result can be applied is given.

ON STATISTICAL APPROXIMATION PROPERTIES OF MODIFIED q-BERNSTEIN-SCHURER OPERATORS

  • Ren, Mei-Ying;Zeng, Xiao-Ming
    • 대한수학회보
    • /
    • 제50권4호
    • /
    • pp.1145-1156
    • /
    • 2013
  • In this paper, a kind of modified $q$-Bernstein-Schurer operators is introduced. The Korovkin type statistical approximation property of these operators is investigated. Then the rates of statistical convergence of these operators are also studied by means of modulus of continuity and the help of functions of the Lipschitz class. Furthermore, a Voronovskaja type result for these operators is given.

GENERALIZED RELAXED PROXIMAL POINT ALGORITHMS INVOLVING RELATIVE MAXIMAL ACCRETIVE MODELS WITH APPLICATIONS IN BANACH SPACES

  • Verma, Ram U.
    • 대한수학회논문집
    • /
    • 제25권2호
    • /
    • pp.313-325
    • /
    • 2010
  • General models for the relaxed proximal point algorithm using the notion of relative maximal accretiveness (RMA) are developed, and then the convergence analysis for these models in the context of solving a general class of nonlinear inclusion problems differs significantly than that of Rockafellar (1976), where the local Lipschitz continuity at zero is adopted instead. Moreover, our approach not only generalizes convergence results to real Banach space settings, but also provides a suitable alternative to other problems arising from other related fields.

MEAN-FIELD BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS ON MARKOV CHAINS

  • Lu, Wen;Ren, Yong
    • 대한수학회보
    • /
    • 제54권1호
    • /
    • pp.17-28
    • /
    • 2017
  • In this paper, we deal with a class of mean-field backward stochastic differential equations (BSDEs) related to finite state, continuous time Markov chains. We obtain the existence and uniqueness theorem and a comparison theorem for solutions of one-dimensional mean-field BSDEs under Lipschitz condition.

STATIONARY SOLUTIONS FOR ITERATED FUNCTION SYSTEMS CONTROLLED BY STATIONARY PROCESSES

  • Lee, O.;Shin, D.W.
    • 대한수학회지
    • /
    • 제36권4호
    • /
    • pp.737-746
    • /
    • 1999
  • We consider a class of discrete parameter processes on a locally compact Banach space S arising from successive compositions of strictly stationary random maps with state space C(S,S), where C(S,S) is the collection of continuous functions on S into itself. Sufficient conditions for stationary solutions are found. Existence of pth moments and convergence of empirical distributions for trajectories are proved.

  • PDF

SYSTEM OF GENERALIZED NONLINEAR MIXED VARIATIONAL INCLUSIONS INVOLVING RELAXED COCOERCIVE MAPPINGS IN HILBERT SPACES

  • Lee, Byung-Soo;Salahuddin, Salahuddin
    • East Asian mathematical journal
    • /
    • 제31권3호
    • /
    • pp.383-391
    • /
    • 2015
  • We considered a new system of generalized nonlinear mixed variational inclusions in Hilbert spaces and define an iterative method for finding the approximate solutions of this class of system of generalized nonlinear mixed variational inclusions. We also established that the approximate solutions obtained by our algorithm converges to the exact solutions of a new system of generalized nonlinear mixed variational inclusions.