1 |
N. Ahmed, Nonlinear diffusion governed by McKean-Vlasov equation on Hilbert space and optimal control, SIAM J. Control Optim. 46 (2007), no. 1, 356-378.
DOI
|
2 |
N. Ahmed and X. Ding, A semilinear McKean-Vlasov stochastic evolution equation in Hilbert space, Stochastic Process. Appl. 60 (1995), no. 1, 65-85.
DOI
|
3 |
V. Borkar and K. Kumar, McKean-Vlasov limit in portfolio optimization, Stoch. Anal. Appl. 28 (2010), no. 5, 884-906.
DOI
|
4 |
R. Buckdahn, B. Djehiche, J. Li, and S. Peng, Mean-field backward stochastic differential equations: a limit approach, Ann. Probab. 37 (2009), no. 4, 1524-1565.
DOI
|
5 |
R. Buckdahn, J. Li, and S. Peng,Mean-field backward stochastic differential equations and related partial differential equations, Stoch. Process. Appl. 119 (2009), no. 10, 3133-3154.
DOI
|
6 |
T. Chan, Dynamics of the McKean-Vlasov equation, Ann. Probab. 22 (1994), no. 1, 431-441.
DOI
|
7 |
S. N. Cohen and R. J. Elliott, Solutions of backward stochastic differential equations on Markov chains, Commun. Stoch. Anal. 2 (2008), no. 2, 251-262.
|
8 |
S. N. Cohen and R. J. Elliott, Comparisons for backward stochastic differential equations on Markov chains and related no-arbitrage conditions, Ann. Appl. Probab. 20 (2010), no. 1, 267-311.
DOI
|
9 |
S. N. Cohen and R. J. Elliott, Existence, uniqueness and comparisons for BSDEs in general spaces, Ann. Probab. 40 (2012), no. 5, 2264-2297.
DOI
|
10 |
D. Crisan and J. Xiong, Approximate McKean-Vlasov representations for a class of SPDEs, Stochastics 82 (2010), no. 1-3, 53-68.
DOI
|
11 |
N. El Karoui, S. Peng, and M. Quenez, Backward stochastic differential equations in finance, Math. Finance 7 (1997), no. 1, 1-71.
DOI
|
12 |
R. J. Elliott, L. Aggoun, and J. B. Moore, Hidden Markov Models: Estimation and Control, Springer-Verlag, Berlin-Heidelberg-New York, 1994.
|
13 |
S. Hamadene and J. Lepeltier, Zero-sum stochastic differential games and backward equations, Systems Control Lett. 24 (1995), no. 4, 259-263.
DOI
|
14 |
M. Kac, Foundations of kinetic theory, In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954955, vol. III, pp. 171-197. University of California Press, Berkeley and Los Angeles, 1956.
|
15 |
J. Li, Reflected Mean-Field Backward Stochastic Differential Equations, Approximation and Associated Nonlinear PDEs, J. Math. Anal. Appl. 413 (2014), no. 1, 47-68.
DOI
|
16 |
P. Kotelenez, A class of quasilinear stochastic partial differential equations of McKean-Vlasov type with mass conservation, Probab. Theory Related Fields 102 (1995), no. 2, 159-188.
DOI
|
17 |
P. Kotelenez and T. Kurtz,Macroscopic limit for stochastic partial differential equations of McKean-Vlasov type, Probab. Theory Related Fields 146 (2010), no. 1-2, 189-222.
DOI
|
18 |
J. Lasry and P. Lions, Mean field games, Jpn J. Math. 2 (2007), no. 1, 229-260.
DOI
|
19 |
Z. Li and J. Luo, Mean-field reflected backward stochastic differential equations, Statist. Probab. Lett. 82 (2012), no. 11, 1961-1968.
DOI
|
20 |
W. Lu and Y. Ren, Anticipated backward stochastic differential equations on Markov chains, Statist. Probab. Lett. 83 (2013), no. 7, 1711-1719.
DOI
|
21 |
H. McKean, A class of Markov processes associated with nonlinear parabolic equations, Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 1907-1911.
DOI
|
22 |
E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation, Systems Control Lett. 14 (1990), no. 1, 55-61.
DOI
|
23 |
S. Peng, Backward stochastic differential equations and applications to optimal control, Appl. Math. Optim. 27 (1993), no. 2, 125-144.
DOI
|
24 |
R. Xu, Mean-field backward doubly stochastic differential equations and related SPDEs, Bound. Value Probl. 2012 (2012), 114, 20 pp.
DOI
|