1 |
J. P. Dauer and N. I. Mahmudov, Approximate controllability of semilinear functional equations in Hilbert spaces, J. Math. Anal. Appl. 273 (2002), no. 2, 310–327
DOI
ScienceOn
|
2 |
J. M. Jeong, Y. C. Kwun, and J. Y. Park, Approximate controllability for semilinear retarded functional-differential equations, J. Dynam. Control Systems 5 (1999), no. 3, 329–346
DOI
|
3 |
K. Naito, Controllability of semilinear control systems dominated by the linear part, SIAM J. Control Optim. 25 (1987), no. 3, 715–722
DOI
ScienceOn
|
4 |
H. Tanabe, Equations of Evolution, Translated from the Japanese by N. Mugibayashi and H. Haneda. Monographs and Studies in Mathematics, 6. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979
|
5 |
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, 1978
|
6 |
M. Yamamoto and J. Y. Park, Controllability for parabolic equations with uniformly bounded nonlinear terms, J. Optim. Theory Appl. 66 (1990), no. 3, 515–532
DOI
|
7 |
H. X. Zhou, Approximate controllability for a class of semilinear abstract equations, SIAM J. Control Optim. 21 (1983), no. 4, 551–565
DOI
ScienceOn
|
8 |
N. Sukavanam and N. K. Tomar, Approximate controllability of semilinear delay control systems, Nonlinear Funct. Anal. Appl. 12 (2007), no. 1, 53–59
|
9 |
G. Di Blasio, K. Kunisch, and E. Sinestrari, -regularity for parabolic partial integrodifferential equations with delay in the highest-order derivatives, J. Math. Anal. Appl. 102 (1984), no. 1, 38–57
DOI
ScienceOn
|