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ON STATISTICAL APPROXIMATION PROPERTIES OF

MODIFIED q-BERNSTEIN-SCHURER OPERATORS

Mei-Ying Ren and Xiao-Ming Zeng

Abstract. In this paper, a kind of modified q-Bernstein-Schurer opera-
tors is introduced. The Korovkin type statistical approximation property
of these operators is investigated. Then the rates of statistical conver-
gence of these operators are also studied by means of modulus of con-
tinuity and the help of functions of the Lipschitz class. Furthermore, a
Voronovskaja type result for these operators is given.

1. Introduction

After Philips [13] introduced and studied q analogue of Bernstein polynomi-
als, the applications of q-calculus in the approximation theory become one of
the main areas of research. Recently the statistical approximation properties
have also been investigated for q-analogue polynomials. For instance, in [1]
Kantorovich type q-Bernstein operators; in [6] q-Baskakov-Kantorovich opera-
tors; in [12] Kantorovich type q-Szász-Mirakjan operators; in [4] q-Bleimann,
Butzer and Hahn operators; in [2] Kantorovich type Lupaş operators based on
q-integer were introduced and their statistical approximation properties were
studied.

The goal of this paper is to introduce new modification of the q-Bernstein-
Schurer operators which were defined by C.-V. Muraur [10] and to study the
statistical approximation properties of these operators with the help of the
Korovkin type approximation theorem. We also establish the rates of statistical
convergence of these operators by means of the modulus of continuity and the
help of functions of the Lipschitz class. Furthermore, we give a Voronovskaja
type result for these operators.
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Before, proceeding further, let us give some basic definitions and notations
from q-calculus. Details on q-integers can be found in [7] and [9].

Let q > 0, for each nonnegative integer k, the q-integer [k]q and the q-
factorial [k]q! are defined by

[k]q :=

{
(1− qk)/(1− q), q 6= 1,
k, q = 1,

and

[k]q! :=

{
[k]q[k − 1]q · · · [1]q, k ≥ 1,
1, k = 0,

respectively.
Then for q > 0 and integers n, k, n ≥ k ≥ 0, we have

[k + 1]q = 1 + q[k]q and [k]q + qk[n− k]q = [n]q.

For the integers n, k, n ≥ k ≥ 0, the q-binomial coefficients is defined by
[

n
k

]

q

:=
[n]q!

[k]q![n− k]q!
.

Let q > 0, for nonnegative integer n, the q-analogue of (x − a)n is defined
by

(x− a)nq :=

{
1, n = 0,

(x− a)(x− qa) · · · (x− qn−1a), n ≥ 1.

2. Construction of the operators

Let p ∈ N
⋃
{0} be fixed. In 1962 F. Schurer [14] introduced and studied the

linear positive operators Bn,p : C[0, 1 + p] → C[0, 1] defined for any n ∈ N and
any f ∈ C[0, 1 + p] as follows:

Bn,p(f ;x) =

n+p∑

k=0

(
n+ p
k

)
xk(1− x)n+p−kf(k/n), x ∈ [0, 1].

Recently, C.-V. Muraur [10] introduced the q-analogue of the above Bern-
stein-Schurer operators Bn,p(f ;x) as follows:

(1) Sn,p(f ; q;x) =

n+p∑

k=0

[
n+ p
k

]

q

xk(1− x)n+p−k
q f([k]q/[n]q),

where f ∈ C[0, 1 + p], p ∈ N
⋃
{0} is fixed, x ∈ [0, 1], n ∈ N, 0 < q < 1.

The moments of the operators Sn,p(f ; q;x) were obtained as follows (see
[10]):

Remark 2.1. For Sn,p(t
j ; q;x), j = 0, 1, 2, we have

(i) Sn,p(1; q;x) = 1;

(ii) Sn,p(t; q;x) =
[n+p]qx

[n]q
;

(iii) Sn,p(t
2; q;x) =

[n+p]q
[n]2q

([n+ p]qx
2 + x(1 − x)).



STATISTICAL APPROXIMATION 1147

Denoting rn,p(q, x) =
[n]qx
[n+p]q

and changing the scale of reference by replacing

the term x by rn,p(q, x), in the definition of Sn,p(f ; q;x) given by (1), we can
define modified q-Bernstein-Schurer operators as follows:

(2) S̃n,p(f ; q;x) =

n+p∑

k=0

[
n+ p
k

]

q

rkn,p(q, x)(1 − rn,p(q, x))
n+p−k
q f([k]q/[n]q),

where f ∈ C[0, 1 + p], p ∈ N
⋃
{0} is fixed, x ∈ [0, 1], n ∈ N, 0 < q < 1.

Now, we give some lemmas, which are necessary to prove our results.

Lemma 2.2. Let rn,p(q, x) =
[n]qx
[n+p]q

for S̃n,p(t
j ; q;x), j = 0, 1, 2, 3, 4. Then we

have

(i) S̃n,p(1; q;x) = 1;

(ii) S̃n,p(t; q;x) = x;

(iii) S̃n,p(t
2; q;x) =

[n+p]q
[n]2q

[
[n+ p]qr

2
n,p(q, x) + rn,p(q, x)(1 − rn,p(q, x))

]
;

(iv)

S̃n,p(t
3; q;x)

=
[n+ p]q
[n]3q

rn,p(q, x) +
2q + q2

[n]3q
[n+ p]q[n+ p− 1]qr

2
n,p(q, x)

+
q3

[n]3q
[n+ p]q[n+ p− 1]q[n+ p− 2]qr

3
n,p(q, x) for n+ p ≥ 2;

(v)

S̃n,p(t
4; q;x)

=
[n+ p]q
[n]4q

rn,p(q, x) +
3q + 3q2 + q3

[n]4q
[n+ p]q[n+ p− 1]qr

2
n,p(q, x)

+
3q3 + 2q4 + q5

[n]4q
[n+ p]q[n+ p− 1]q[n+ p− 2]qr

3
n,p(q, x)

+
q6

[n]4q
[n+ p]q[n+ p− 1]q[n+ p− 2]q[n+ p− 3]qr

4
n,p(q, x) for n+ p ≥ 3.

Proof. In view of the definition given by (2) and Remark 2.1, we can easily
obtain identities (i), (ii), (iii) hold.

(iv) When j = 3 and n+ p ≥ 2, in view of [k + 1]q = 1 + q[k]q, we have

S̃n,p(t
3; q;x)

=

n+p∑

k=1

[
n+ p
k

]

q

rkn,p(q, x)(1 − rn,p(q, x))
n+p−k
q ([k]q/[n]q)

3

=
1

[n]3q

n+p−1∑

k=0

[n+ p]q!(1 + 2q[k]q + q2[k]2q)

[k]q![n+ p− k − 1]q!
rk+1
n,p (q, x)(1 − rn,p(q, x))

n+p−k−1
q
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=
[n+ p]q
[n]3q

rn,p(q, x)

+
2q + q2

[n]3q

n+p−1∑

k=1

[n+ p]q!

[k − 1]q![n+ p− k − 1]q!
rk+1
n,p (q, x)(1 − rn,p(q, x))

n+p−k−1
q

+
q3

[n]3q

n+p−1∑

k=2

[n+ p]q!

[k − 2]q![n+ p− k − 1]q!
rk+1
n,p (q, x)(1 − rn,p(q, x))

n+p−k−1
q

=
[n+ p]q
[n]3q

rn,p(q, x) +
2q + q2

[n]3q
[n+ p]q[n+ p− 1]qr

2
n,p(q, x)

+
q3

[n]3q
[n+ p]q[n+ p− 1]q[n+ p− 2]qr

3
n,p(q, x).

(v) When j = 4 and n+ p ≥ 3, similar to the case of j = 3 and n+ p ≥ 2,
by simple calculation we can get the stated result. �

Lemma 2.3. Let 0 < q < 1, n ∈ N, x ∈ [0, 1]. Then we have

(i) S̃n,p(t− x; q;x) = 0;

(ii) S̃n,p((t− x)2; q;x) ≤ 1
[n]q

(1−
[n]qx
[n+p]q

).

Proof. (i) By Lemma 2.2, it is clear that we have S̃n,p(t− x; q;x) = 0.
(ii) In view of Lemma 2.2, for any x ∈ [0, 1], n ∈ N, we have

S̃n,p((t− x)2; q;x) = S̃n,p(t
2; q;x)− 2xS̃n,p(t; q;x) + x2

= S̃n,p(t
2; q;x))− x2

=
x

[n]q
(1−

[n]qx

[n+ p]q
) ≤

1

[n]q
(1 −

[n]qx

[n+ p]q
).

�

Let q = {qn}, 0 < qn < 1 be a sequence satisfying the following two expres-
sions:

(3) lim
n→∞

qn = 1 and lim
n→∞

qnn = a (a is a constant).

Here, we can give the following results.

Lemma 2.4. Let q = {qn}, 0 < qn < 1 be a sequence satisfying the condition

(3), x ∈ [0, 1]. Then we have

(i) limn→∞[n]qn S̃n,p((t− x)2; qn;x) = x(1− x);

(ii) limn→∞[n]qn S̃n,p((t− x)4; qn;x) = 0.

Proof. (i) Let q = {qn}, 0 < qn < 1 be a sequence satisfying the condition (3),

we have limn→∞
[n]qn

[n+p]qn
= 1, hence, by the proof of Lemma 2.3(ii), we can

obtain limn→∞[n]qn S̃n,p((t− x)2; qn;x) = limn→∞ x(1−
[n]qnx
[n+p]qn

) = x(1 − x).
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(ii) Let n ≥ 3. In view of Lemma 2.2, using [n + p]qn = [n]qn + qnn [p]qn ,
qn → 1 and qnn → a as n → ∞, we have

lim
n→∞

[n]qn S̃n,p((t− x)4; qn;x)

= lim
n→∞

[n]qn

[
S̃n,p(t

4; qn;x) − 4xS̃n,p(t
3; qn;x)

+6x2S̃n,p(t
2; qn;x) − 4x3S̃n,p(t; qn;x) + x4

]

= lim
n→∞

[
[n+ p]qn([n+ p]qn − 1)([n+ p]qn − [2]qn)

[n]2qn
r4n,p(qn, x)

−4x
[n+ p]qn([n+ p]qn − 1)

[n]qn
r3n,p(qn, x) + 6x2

[n+ p]2qn
[n]qn

r2n,p(qn, x)

−3[n]qnx
4
]
− x4 − 3apx4

= lim
n→∞

[
[n+ p]2qn([n+ p]qn − 1)

[n]2qn
r4n,p(qn, x)− 4x

[n+ p]2qn
[n]qn

r3n,p(qn, x)

+6x2
[n+ p]2qn
[n]qn

r2n,p(qn, x)− 3[n]qnx
4

]
+ x4 − 3apx4

= lim
n→∞

[
([n+ p]qn − 1)[n]2qn

[n+ p]2qn
x4 − 4

[n]2qn
[n+ p]qn

x4 + 3[n]qnx
4

]
+ x4 − 3apx4

= lim
n→∞

3[n]qn
[n+ p]qn

([n+ p]qn − [n]qn)x
4 − 3apx4

= 0.
�

3. Statistical approximation of Korovkin type

Now, let us recall the concept of the statistical convergence which was in-
troduced by Fast [5].

Let set K ⊆ N and Kn = {k ≤ n : k ∈ K}, the natural density of K
is defined by δ(K) := limn→∞

1
n |Kn| if the limit exists (see [11], where |Kn|

denotes the cardinality of the set Kn).
A sequence x = {xk} is call statistically convergent to a number L, if for

every ε > 0, δ{k ∈ N : |xk − L| ≥ ε} = 0. This convergence is denoted as
st− lim

k
xk = L.

Note that any convergent sequence is statistically convergent, but not con-
versely. Details can be found in [3].

In approximation theory, the concept of statistically convergence was used
by Gadjiev and Orhan [8]. They proved the following Bohman-Korovkin type
approximation theorem for statistically convergence.
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Theorem 3.1 (see [8]). If the sequence of linear positive operators An : C[a, b]
→ C[a, b] satisfies the conditions

st− lim
n

‖An(eυ; ·)− eυ‖C[a,b] = 0

for eυ(t) = tυ, υ = 0, 1, 2, then for any f ∈ C[a, b],

st− lim
n

‖An(f ; ·)− f‖C[a,b] = 0.

Corollary 3.2. Let interval [c, d] ⊆ [a, b]. If the sequence of linear positive

operators An : C[a, b] → C[c, d] satisfies the conditions

st− lim
n

‖An(eυ; ·)− eυ‖C[c,d] = 0

for eυ(t) = tυ, υ = 0, 1, 2, then for any f ∈ C[a, b],

st− lim
n

‖An(f ; ·)− f‖C[c,d] = 0.

Proof. Similar to the proof of Theorem 3.1 (see [8]), we can get the desired
conclusion. Here, the proof is omitted. �

Theorem 3.3. Let q = {qn}, 0 < qn < 1 be a sequence satisfying the following

condition

(4) st− lim
n

qn = 1, st− lim
n

qnn = c (c < 1).

Then for any f ∈ C[0, 1 + p], we have

st− lim
n

‖S̃n,p(f ; qn; ·)− f‖C[0,1] = 0.

Proof. By Corollary 3.2, for any f ∈ C[0, 1 + p], enough to prove that st −

lim
n

‖S̃n,p(eυ; qn; ·)− eυ‖C[0,1] = 0 for eυ(t) = tυ, υ = 0, 1, 2.

By Lemma 2.2(i), we can easily get

(5) st− lim
n

‖S̃n,p(e0; qn; ·)− e0‖C[0,1] = 0.

By Lemma 2.2(ii), we can easily get

(6) st− lim
n

‖S̃n,p(e1; qn; ·)− e1‖C[0,1] = 0.

By Lemma 2.2(iii), we have

‖S̃n,p(e2; qn; ·)− e2‖C[0,1] = ‖
e1

[n]qn
(1−

[n]qne1
[n+ p]qn

)‖C[0,1] ≤
1

[n]qn
.

Now for every given ε > 0, let us define the following sets: T = {k :

‖S̃k,p(e2; qk; ·)− e2‖C[0,1] ≥ ε}, T1 = {k : 1
[k]qk

≥ ε}.

It is clear that T ⊆ T1, so we get

δ{k ≤ n : ‖S̃k,p(e2; qk; ·)− e2‖C[0,1] ≥ ε} ≤ δ{k ≤ n :
1

[k]qk
≥ ε}.
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By condition (4), we have

st− lim
n

1

[n]qn
= 0,

so, we can get

(7) st− lim
n

‖S̃n,p(e2; qn; ·)− e2‖C[0,1] = 0.

In view of the equalities (5), (6) and (7), the proof is complete. �

4. Rates of statistical convergence

In this section, we will give the rates of statistical convergence of the modified

q-Bernstein-Schurer operators S̃n,p(f ; q;x).
Let f ∈ C[0, 1 + p], for any δ > 0, the usual modulus of continuity for f is

defined as ω(f ; δ) = sup
0<h≤δ

sup
x,x+h∈[0,1+p]

|f(x+ h)− f(x)|.

By the property of the usual modulus of continuity, we have limδ→0+ ω(f ; δ)
= 0 for f ∈ C[0, 1 + p].

Let f ∈ C[0, 1 + p] for any t ∈ [0, 1 + p] and x ∈ [0, 1]. Then we have
|f(t)− f(x)| ≤ ω(f ; |t− x|), so for any δ > 0, we get

ω(f ; |t− x|) ≤

{
ω(f ; δ), |t− x| < δ,

ω(f ; (t−x)2

δ ), |t− x| ≥ δ.

In the light of ω(f ;λδ) ≤ (1 + λ)ω(f ; δ) for λ > 0, it is clear that we have

(8) |f(t)− f(x)| ≤ (1 + δ−2(t− x)2)ω(f ; δ)

for any t ∈ [0, 1 + p], x ∈ [0, 1] and any δ > 0.

Now, we give the rates of statistical convergence of these operators S̃n,p(f ; q;
x) to the function f ∈ C[0, 1 + p] by means of modulus of continuity.

Theorem 4.1. Let q = {qn}, 0 < qn < 1 be a sequence satisfying the condition

(4). Then for any f ∈ C[0, 1 + p] and x ∈ [0, 1], we have

|S̃n,p(f ; qn;x)− f(x)| ≤ 2ω(f ; δn(x)),

where

(9) δn(x) =

[
1

[n]qn
(1−

[n]qnx

[n+ p]qn
)

]1/2
.

Proof. Using the linearity and positivity of these operators S̃n,p(f ; q;x), by
Lemma 2.3(ii) and the inequality (8), for any f ∈ C[0, 1 + p] and x ∈ [0, 1], we
get

|S̃n,p(f ; q;x)− f(x)| ≤ S̃n,p(|f(t)− f(x)|; q;x)

≤ (1 + δ−2S̃n,p((t− x)2; q;x))ω(f ; δ)

≤

[
1 + δ−2 1

[n]q
(1 −

[n]qx

[n+ p]q
)

]
ω(f ; δ).
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Taking q = {qn}, 0 < qn < 1 be a sequence satisfying the condition (4) and

choosing δ = δn(x) as in (9), we have |S̃n,p(f ; qn;x)−f(x)| ≤ 2ω(f ; δn(x)). �

From the condition (4), by simple calculation, we can get st − lim
n

δn(x) =

0, which can educe st − lim
n

ω(f ; δn(x)) = 0. This gives the pointwise rate

of statistical convergence of these operators S̃n,p(f ; q;x) to the function f ∈
C[0, 1 + p].

In Theorem 4.1, replacing the condition (4) by the condition (3), similar
to the proof of Theorem 4.1, we can give the rate of pointwise convergence of

these operators S̃n,p(f ; q;x) to the function f ∈ C[0, 1 + p] by means of usual
modulus of continuity as follows:

Proposition 4.2. Let q = {q′n}, 0 < q′n < 1 be a sequence satisfying the

condition (3). Then for any f ∈ C[0, 1 + p] and x ∈ [0, 1], we have

|S̃n,p(f ; q
′
n;x)− f(x)| ≤ 2ω(f ; δ′n(x)),

where

(10) δ′n(x) =

[
1

[n]q′n
(1−

[n]q′nx

[n+ p]q′n
)

]1/2
.

Proof. Using the linearity and positivity of these operators S̃n,p(f ; q;x), by
Lemma 2.3(ii) and the inequality (8), for any f ∈ C[0, 1 + p] and x ∈ [0, 1], we
get

|S̃n,p(f ; q;x)− f(x)| ≤ S̃n,p(|f(t)− f(x)|; q;x)

≤ (1 + δ−2S̃n,p((t− x)2; q;x))ω(f ; δ)

≤

[
1 + δ−2 1

[n]q
(1 −

[n]qx

[n+ p]q
)

]
ω(f ; δ).

Taking q = {q′n}, 0 < q′n < 1 be a sequence satisfying the condition (3) and

choosing δ = δ′n(x) as in (10), we have |S̃n,p(f ; q
′
n;x)−f(x)| ≤ 2ω(f ; δ′n(x)). �

Remark 4.3. We compare the result in Theorem 4.1 with the result in Propo-
sition 4.2. To outward seeming these two results are similar completely, how-
ever, their conditions are different. In Theorem 4.1, q = {qn}, 0 < qn < 1
be a sequence satisfying the condition (4), and in Proposition 4.2, q = {q′n},
0 < q′n < 1 be a sequence satisfying the condition (3). Obviously, the condition
(3) is stronger than the condition (4). Thus the result in Theorem 4.1 and the
result in Proposition 4.2 are different essentially.

Corollary 4.4. Let q = {qn}, 0 < qn < 1 be a sequence satisfying the condition

(4). Then for any f ∈ C[0, 1 + p], we have

‖S̃n,p(f ; qn; ·)− f‖C[0,1] ≤ 2ω(f ; ηn),
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where

(11) ηn =

(
1

[n]qn

)1/2

.

Proof. Since for any x ∈ [0, 1], we have 0 ≤ 1
[n]qn

(1 −
[n]qnx
[n+p]qn

) ≤ 1
[n]qn

, thus,

in view of the monotonicity of the usual modulus of continuity, we can get
ω(f ; δn(x)) ≤ ω(f ; ηn), where δn(x) and ηn are given in (9) and (11) respec-
tively. So, by Theorem 4.1, for any x ∈ [0, 1], we have

|S̃n,p(f ; qn;x)− f(x)| ≤ 2ω(f ; δn(x)) ≤ 2ω(f ; ηn),

which implies the proof is complete. �

Theorem 4.5. Let q = {qn}, 0 < qn < 1 be a sequence satisfying the condition

(4). Then for any f ∈ C1[0, 1 + p] and x ∈ [0, 1], we have

|S̃n,p(f ; qn;x)− f(x)| ≤ 2δn(x)ω(f
′; δn(x)),

where δn(x) is given by (9).

Proof. Let f ∈ C1[0, 1 + p]. For any t ∈ [0, 1 + p], x ∈ [0, 1], we have

f(t)− f(x)− f ′(x)(t − x) =

∫ t

x

(f ′(u)− f ′(x))du,

so, for any δ > 0, we get

|f(t)− f(x)− f ′(x)(t − x)| ≤ |

∫ t

x

|f ′(u)− f ′(x)|du|

≤ ω(f ′; |t− x|)|t− x|

≤ ω(f ′; δ)(|t− x|+ δ−1(t− x)2).

Thus, we have

|S̃n,p(f(t)− f(x)− f ′(x)(t − x); q;x)|

≤ ω(f ′; δ)(S̃n,p(|t− x|; q;x) + δ−1S̃n,p((t− x)2; q;x)).

Using Cauchy-Schwartz inequality, we obtain

S̃n,p(|t− x|; q;x) ≤

√
S̃n,p(1; q;x)

√
S̃n,p((t− x)2; q;x),

so, we have

|S̃n,p(f(t)− f(x)− f ′(x)(t − x); q;x)|

≤ ω(f ′; δ)(

√
S̃n,p(1; q;x) + δ−1

√
S̃n,p((t− x)2; q;x))

√
S̃n,p((t− x)2; q;x).

Thus, by Lemma 2.2 and Lemma 2.3, we get

|S̃n,p(f ; q;x)− f(x)|

≤ |f ′(x)||S̃n,p(t− x; q;x)|
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+ ω(f ′; δ)(1 + δ−1

√
S̃n,p((t− x)2; q;x))

√
S̃n,p((t− x)2; q;x)

≤ ω(f ′; δ)

{
1 + δ−1

[
1

[n]q
(1−

[n]qx

[n+ p]q
)

]1/2}[
1

[n]q
(1−

[n]qx

[n+ p]q
)

]1/2
.

Taking q = {qn}, 0 < qn < 1 be a sequence satisfying the condition (4) and
choosing δ = δn(x) as in (9), then from the above inequality we obtain the
desired result. �

Corollary 4.6. Let q = {qn}, 0 < qn < 1 be a sequence satisfying the condition

(4). Then for any f ∈ C1[0, 1 + p], we have

‖S̃n,p(f ; qn; ·)− f‖C[0,1] ≤ 2ηnω(f
′; ηn),

where ηn is given by (11).

Proof. Similar to the proof of Corollary 4.4, we can get the desired result. Here,
the proof is omitted. �

Next, we give the rate of statistical convergence of the operators S̃n,p(f ; q;x)
with the help of functions of the Lipschitz class.

Theorem 4.7. Let 0 < α ≤ 1, M > 0, f ∈ LipαM on [0, 1 + p], also, let

q = {qn}, 0 < qn < 1 be a sequence satisfying the condition (4). Then for any

x ∈ [0, 1], we have

|S̃n,p(f ; qn;x)− f(x)| ≤ Mδαn(x),

where δn(x) is given by (9).

Proof. Let 0 < α ≤ 1, M > 0, f ∈ LipαM on [0, 1 + p]. Then we obtain f ∈
C[0, 1+p], also, for any t ∈ [0, 1+p] and any x ∈ [0, 1], we have |f(t)− f(x)| ≤

M |t−x|α. Thus, using the linearity and positivity of the operator S̃n,p(f ; q;x),

we obtain |S̃n,p(f ; q;x)−f(x)| ≤ S̃n,p(|f(t)−f(x)|; q;x) ≤ MS̃n,p(|t−x|α; q;x).
Using the Hölder inequality with m = 2

α , n = 2
2−α , we get

|S̃n,p(f ; q;x)− f(x)| ≤ M [S̃n,p((t− x)2; q;x)]α/2.

So, by Lemma 2.3(ii), we have |S̃n,p(f ; q;x) − f(x)| ≤ M [ 1
[n]q

(1 −
[n]qx
[n+p]q

)]α/2.

Taking q = {qn}, 0 < qn < 1 be a sequence satisfying the condition (4), the
desired result follows immediately. �

5. A Voronovskaja type theorem

In this section, we give a Voronovskaja type theorem of the S̃n,p(f ; q;x).

Theorem 5.1. Let x ∈ [0, 1] and q = {qn}, 0 < qn < 1 be a sequence satisfying

the condition (3). Then for any f ∈ C2[0, 1 + p], we have

lim
n→∞

[n]qn(S̃n,p(f ; qn;x)− f(x)) =
x(1 − x)

2
f ′′(x).
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Proof. Let f ∈ C2[0, 1+ p] and x ∈ [0, 1] be fixed. For any t ∈ [0, 1+ p], by the
Taylor formula, we have

f(t)− f(x) = f ′(x)(t − x) +
f ′′(x)

2
(t− x)2 + r(t, x)(t − x)2,

where r(t, x) ∈ C[0, 1 + p] and limt→x r(t, x) = 0. By Lemma 2.2, we get
(12)

S̃n,p(f ; qn;x)− f(x) =
f ′′(x)

2
S̃n,p((t− x)2; qn;x) + S̃n,p(r(t, x)(t − x)2; qn;x).

In view of limt→x r(t, x) = 0, for any ε > 0, there exists a constant δ > 0, when
t ∈ Ux(δ) = {t | t ∈ [0, 1 + p] and |t− x| < δ}, we have |r(t, x)| < ǫ.

Denoting

λδ(t, x) =

{
1, |t− x| ≥ δ,
0, |t− x| < δ,

then |r(t, x)(t − x)2| ≤ ε(t − x)2 + λδ(t, x)|r(t, x)|(t − x)2, |S̃n,p(r(t, x)(t −

x)2; qn;x)| ≤ εS̃n,p((t− x)2; qn;x) + S̃n,p(λδ(t, x)|r(t, x)|(t − x)2; qn;x).
Since [0, 1+p]\Ux(δ) is compact, also, r(t, x) is bounded on [0, 1+p], so, there

exists a constant L > 0, for any t ∈ [0, 1+p], we obtain λδ(t, x)|r(t, x)|(t−x)2 ≤
L(t− x)4, hence

|S̃n,p(r(t, x)(t − x)2; qn;x)| ≤ εS̃n,p((t− x)2; qn;x) + LS̃n,p((t− x)4; qn;x).

Note that ε > 0 is arbitrary, by Lemma 2.4, we obtain

lim
n→∞

[n]qn |S̃n,p(r(t, x)(t − x)2; qn;x)| = 0,

so

(13) lim
n→∞

[n]qn S̃n,p(r(t, x)(t − x)2; qn;x) = 0.

By equalities (12), (13) and Lemma 2.4, we can obtain the desired result. �
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