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SYSTEM OF GENERALIZED NONLINEAR MIXED

VARIATIONAL INCLUSIONS INVOLVING RELAXED

COCOERCIVE MAPPINGS IN HILBERT SPACES

Byung-Soo Lee and Salahuddin

Abstract. We considered a new system of generalized nonlinear mixed

variational inclusions in Hilbert spaces and define an iterative method
for finding the approximate solutions of this class of system of general-

ized nonlinear mixed variational inclusions. We also established that the

approximate solutions obtained by our algorithm converges to the exact
solutions of a new system of generalized nonlinear mixed variational in-

clusions.

1. Introduction

It is well known that the variational inequality theory and complementar-
ity problems are very powerful tools of the current mathematical technology.
In recent years, classical variational inequality and complementarity problems
have been extended and generalized into a large variety of problems arising in
mechanics, physics, optimization and control theory etc., see [3, 4, 6, 10, 11].
Hassouni and Moudafi [12] introduced and studied a class of mixed type vari-
ational inequalities with single-valued mappings which was called variational
inclusions. Verma [22, 23, 24] studied some system of variational inequali-
ties with single-valued mappings and suggested some iterative algorithms to
compute approximate solutions of these systems in Hilbert spaces. As an ap-
plication of system of variational inclusions Pang [20] showed that the traffic
equilibrium problem, the Nash equilibrium problem and the general equilibrium
problem, can be modeled as a system of variational inequalities and inclusions,
see [5, 9, 16, 19].

Inspired and motivated by recent research works in this field, see [1, 2, 7,
8, 13, 14, 15, 17, 21, 25], we introduce a new system of generalized nonlinear
mixed variational inclusions and suggest an iterative algorithm. By the defini-
tion of relaxed cocoersive mapping and resolvent operator techniques, we find
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the exact solutions of our systems of generalized nonlinear mixed variational
inclusions involving different nonlinear operators and fixed point problems in
Hilbert spaces.

2. Basic Foundation

Throughout this paper, H is a real Hilbert space endowed with an inner
product 〈·, ·〉 and a norm ‖ · ‖. Let CB(H) denote the family of all nonempty
closed bounded subsets of H. Let Mi : H → 2H be the maximal monotone
mappings, Ti : H → 2H be the set-valued mappings and Ai, Bi, gi : H → H be
the nonlinear single-valued mappings for i = 1, 2, 3. We consider the following
problem of finding x, y, z ∈ H such that u1 ∈ T1y, u2 ∈ T2z, u3 ∈ T3x and

0 ∈ g1(x)− g1(y) + r1(A1(g1(y))−B1(u1)) + r1M1(g1(x)),

0 ∈ g2(y)− g2(z) + r2(A2(g2(z))−B2(u2)) + r2M2(g2(y)),

0 ∈ g3(z)− g3(x) + r3(A3(g3(x))−B3(u3)) + r3M3(g3(z)),(1)

which is called the system of generalized nonlinear mixed variational inclusions
with a solution set (x, y, z, ui), denoted by SGNMVID(A,B,T, g) of the problem
(1) for i = 1, 2, 3.

Definition 1. [4] If M : H → 2H is a maximal monotone mapping, then for
any fixed r > 0, the mapping JrM : H → H defined by

JrM (x) = (I + rM)−1(x), ∀x ∈ H, (2)

is called the resolvent operator of index r of M , where I is the identity map-
ping on H. Furthermore the resolvent operator JrM is single-valued and non-
expansive, i.e.,

‖JrM (x)− JrM (y)‖ ≤ ‖x− y‖, ∀x, y ∈ H. (3)

Lemma 2.1. [18] Let D be a Hausdorff metric in CB(H) and A,B ∈ CB(H),
and ε > 0 be any real number. Then for a ∈ A, there exists b ∈ B such that

‖a− b‖ ≤ (1 + ε) D(A,B).

Definition 2. Let T : H → 2H be a set-valued mapping and x, y ∈ H. T is
said to be

(i) µ-cocoercive if there exists a constant µ > 0 such that

〈u1 − u2, x− y〉 ≥ µ‖u1 − u2‖2, ∀u1 ∈ Tx, u2 ∈ Ty
(ii) relaxed µ-cocoercive if there exists a constant µ > 0 such that

〈u1 − u2, x− y〉 ≥ −µ‖u1 − u2‖2, ∀u1 ∈ Tx, u2 ∈ Ty

Definition 3. Let T : H → CB(H) be a set-valued mapping. T is said to be
λ-Lipschitz continuous if D(Tx, Ty) ≤ λ · ‖x− y‖ for x, y ∈ H.

Remark 1. The same definitions could be obtained for the single-valued mapping
T in Definition 2 and Definition 3.
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Definition 4. A single-valued mapping B : H → H is said to be relaxed µ-
cocoercive with respect to T : H → 2H if

〈Bu1 −Bu2, x− y〉 ≥ −µ‖Bu1 −Bu2‖2 for x, y ∈ H and u1 ∈ Tx, u2 ∈ Ty.

3. Main Results

First we give the following lemma, the proof of which is a direct consequence
of Definition 1, hence is omitted.

Lemma 3.1. (x, y, z, ui) is the solution set of system of generalized nonlinear
mixed variational inclusions (1) if and only if it satisfies

g1(x) = Jr1M1
[g1(y)− r1(A1(g1(y))−B1(u1))],

g2(y) = Jr2M2
[g2(z)− r2(A2(g2(z))−B2(u2))],

g3(z) = Jr3M3
[g3(x)− r3(A3(g3(x))−B3(u3))].(4)

where ri > 0 and JriMi
= (I + riMi)

−1 is a resolvent operator for i = 1, 2, 3.

The preceding lemma allows us to suggest the following iterative algorithm
for the system (1).

Algorithm 3.2. Let {εn} be a sequence of nonnegative real numbers with
εn → 0 as n → ∞. For any given x0, y0, z0 ∈ H, compute {xn}, {yn}, {zn} ⊂
H, {un,1} ⊂

⋃∞
n=0 T1yn, {un,2} ⊂

⋃∞
n=0 T2zn and {un,3} ⊂

⋃∞
n=0 T3xn, gener-

ated by the following iterative processes;

xn+1 = xn − g1(xn) + Jr1M1
[g1(yn)− r1(A1(g1(yn))−B1(un,1))];

un,1 ∈ T1(yn), un−1,1 ∈ T1(yn−1) : ‖un,1−un−1,1‖ ≤ (1+εn)D(T1(yn), T1(yn−1)),

g2(yn) = Jr2M2
[g2(zn)− r2(A2(g2(zn))−B2(un,2))];

un,2 ∈ T2(zn), un−1,2 ∈ T2(zn−1) : ‖un,2−un−1,2‖ ≤ (1+εn)D(T2(zn), T2(zn−1)),

g3(zn) = Jr3M3
[g3(xn)− r3(A3(g3(xn))−B3(un,3))];

un,3 ∈ T3(xn), un−1,3 ∈ T3(xn−1) : ‖un,3−un−1,3‖ ≤ (1+εn)D(T3(xn), T3(xn−1)),

r1, r2, r3 > 0 and n = 0, 1, 2, · · · . (5)

We apply Algorithm 3.2 to prove the following convergence theorem.

Theorem 3.3. Let H be a real Hilbert space and Mi : H → 2H be the maximal
monotone mapping (i = 1, 2, 3). Let Ti : H → CB(H) be the ηi-Lipschitz
continuous, Bi : H → H be σi-Lipschitz continuous and B1 be relaxed ξ1-
cocoercive with respect to T1 (i = 1, 2, 3). Let gi : H → H be µi-cocoercive
and λi-Lipschitz continuous, and Ai : H → H be ρi-Lipschitz continuous (i =
1, 2, 3). Suppose that for all x, y ∈ H, we have

‖JriMi
(x)− JriMi

(y)‖ ≤ ‖x− y‖ (i = 1, 2, 3). (6)

Put

p1 =
√

1− 2µ1λ21 + λ21 < 1. (7)
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If

(i) |r1 − ξ1σ
2
1η

2
1−ρ1λ1(1−2p1)
σ2
1η

2
1−ρ21λ2

1
| <
√

(ξ1σ2
1η

2
1−ρ1λ1(1−2p1))2−(σ2

1η
2
1−ρ21λ2

1)4p1(1−p1)
σ2
1η

2
1−ρ21λ2

1
,

ξ1σ
2
1η

2
1 > ρ1λ1(1− 2p1) +

√
(σ2

1η
2
1 − ρ21λ21)4p1(1− p1),

ξ1σ
2
1η

2
1 > ρ1λ1(1− 2p1)

σ2
1η

2
1 > ρ21λ

2
1

p1 <
1

2
,

(ii)

|r2 −
λ2(µ2λ2 − 1)

ρ2λ2 + σ2η2
| < 0,

(iii)

|r3 −
λ3(µ3λ3 − 1)

ρ3λ3 + σ3η3
| < 0,

(iv)

and θ < 1

where

θ = (θ0 + (θ0 + θ1 + r1ρ1λ1)
1

µ2µ3λ22λ
2
3

θ2θ3 with (8)

θ0 = p1,

θ1 =
√

1− 2r1ξ1σ2
1η

2
1 + r21σ

2
1η

2
1 ,

θ2 = λ2 + r2(ρ2λ2 + σ2η2),

θ3 = λ3 + r3(ρ3λ3 + σ3η3).

Then SGNMVID(A,B,T, g) 6= ∅. Moreover, the sequences {xn}, {yn}, {zn}, {un,1}, {un,2}
and {un,3} generated by Algorithm 3.2 converge strongly to x∗, y∗, z∗, u∗1 ∈
T1(y∗), u∗2 ∈ T2(z∗) and u∗3 ∈ T3(x∗), respectively, where (x∗, y∗, z∗, u∗1, u

∗
2, u
∗
3) ∈

SGNMVID(A,B,T, g).

Proof. From Algorithm 3.2 and using the non-expansiveness of the resolvent
operator, we have

‖xn+1−xn‖ = ‖xn−g1(xn)+Jr1M1
[g1(yn)−r1(A1(g1(yn))−B1(un,1))]−{xn−1−g1(xn−1)

+Jr1M1
[g1(yn−1)− r1(A1(g1(yn−1))−B1(un−1,1))]}‖

≤ ‖xn−xn−1−(g1(xn)−g1(xn−1))‖+‖g1(yn)−g1(yn−1)−r1(A1(g1(yn))−A1(g1(yn−1)))

+r1(B1(un,1)−B1(un−1,1))‖
≤ ‖xn − xn−1 − (g1(xn)− g1(xn−1))‖+ ‖yn − yn−1 − (g1(yn)− g1(yn−1))‖

+‖yn−yn−1+r1(B1(un,1)−B1(un−1,1))‖+r1‖A1(g1(yn))−A1(g1(yn−1))‖. (9)
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On the other hand, by using the λ1-Lipschitz continuity and µ1-cocoercivity of
g1, we have

‖xn−xn−1−(g1(xn)−g1(xn−1))‖2 ≤ ‖xn−xn−1‖2−2〈g1(xn)−g1(xn−1), xn−xn−1〉

+‖g1(xn)− g1(xn−1)‖2

≤ ‖xn − xn−1‖2 − 2µ1λ
2
1‖xn − xn−1‖2 + λ21‖xn − xn−1‖2

≤ p21‖xn − xn−1‖2, (10)

and

‖yn − yn−1 − (g1(yn)− g1(yn−1))‖2 ≤ p21‖yn − yn−1‖2, (11)

where p1 =
√

1− 2µ1λ21 + λ21.
Since B1 is σ1-Lipschitz continuous and T1 is η1-Lipschitz continuous, we have

‖B1(un,1)−B1(un−1,1)‖ ≤ σ1‖un,1 − un−1,1‖
≤ σ1D(T1(yn), T1(yn−1))

≤ σ1(1 + εn)η1‖yn − yn−1‖.
(12)

Since B1 is relaxed ξ1-cocoercive with respect to T1, from (12) we have

‖yn − yn−1 + r1(B1(un,1)−B1(un−1,1))‖2

= ‖yn−yn−1‖2+2r1〈B1(un,1)−B1(un−1,1), yn−yn−1〉+r21‖B1(un,1)−B1(un−1,1)‖2

≤ ‖yn− yn−1‖2− 2r1ξ1‖B1(un,1)−B1(un−1,1)‖2 + r21‖B1(un,1)−B1(un−1,1)‖2

≤ ‖yn−yn−1‖2−2r1ξ1σ
2
1(1+εn)2η21‖yn−yn−1‖2 +r21σ

2
1(1+εn)2η21‖yn−yn−1‖2

≤ (1− 2r1ξ1σ
2
1(1 + εn)2η21 + r21σ

2
1(1 + εn)2η21)‖yn − yn−1‖2. (13)

By the Lipschitz continuities of A1 and g1 with constants ρ1 and λ1, respectively,
we have

‖A1(g1(yn))−A1(g1(yn−1))‖ ≤ ρ1‖g1(yn)− g1(yn−1)‖
≤ ρ1λ1‖yn − yn−1‖.(14)

From (10) to (14), (9) becomes

‖xn+1 − xn‖

≤ p1‖xn − xn−1‖+ (p1 +
√

1− 2r1ξ1σ2
1η

2
1(1 + εn)2 + r21σ

2
1(1 + εn)2η21 + r1ρ1λ1)

× ‖yn − yn−1‖.(15)

Now

‖g2(yn)− g2(yn−1)‖‖yn − yn−1‖ ≥ 〈g2(yn)− g2(yn−1), yn − yn−1〉
≥ µ2‖g2(yn)− g2(yn−1)‖2

≥ µ2λ
2
2‖yn − yn−1‖2.(16)

Hence

‖yn − yn−1‖ ≤
1

µ2λ22
‖g2(yn)− g2(yn−1)‖
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≤ 1

µ2λ22
‖Jr2M2

[g2(zn)− r2(A2(g2(zn))−B2(un,2))]

− Jr2M2
[g2(zn−1)− r2(A2(g2(zn−1))−B2(un−1,2))]‖

≤ 1

µ2λ22
‖g2(zn)−g2(zn−1)−r2(A2(g2(zn))−A2(g2(zn−1)))+r2(B2(un,2)−B2(un−1,2))‖

≤ 1

µ2λ22
[‖g2(zn)−g2(zn−1)‖+r2‖A2(g2(zn))−A2(g2(zn−1))‖+r2‖B2(un,2)−B2(un−1,2)‖]

≤ 1

µ2λ22
[λ2‖zn − zn−1‖+ r2λ2ρ2‖zn − zn−1‖+ r2σ2‖un,2 − un−1,2‖]

≤ 1

µ2λ22
[λ2‖zn − zn−1‖+ r2λ2ρ2‖zn − zn−1‖+ r2σ2(1 + εn)η2‖zn − zn−1‖]

≤ 1

µ2λ22
[λ2 + r2(λ2ρ2 + σ2(1 + εn)η2)]‖zn − zn−1‖

Consequently,

‖yn − yn−1‖ ≤
1

µ2λ22
θn,2‖zn − zn−1‖, (17)

where θn,2 = λ2 + r2(λ2ρ2 + σ2(1 + εn)η2).
Again

‖g3(zn)− g3(zn−1)‖‖zn − zn−1‖ ≥ 〈g3(zn)− g3(zn−1), zn − zn−1〉
≥ µ3‖g3(zn)− g3(zn−1)‖2

≥ µ3λ
2
3‖zn − zn−1‖2.(18)

That implies that

‖zn − zn−1‖ ≤
1

µ3λ23
‖g3(zn)− g3(zn−1)‖

≤ 1

µ3λ23
‖Jr3M3

[g3(xn)− r3(A3(g3(xn))−B3(un,3))]

−Jr3M3
[g3(xn−1)− r3(A3(g3(xn−1))−B3(un−1,3))]‖

≤ 1

µ3λ23
‖g3(xn)−g3(xn−1)−r3(A3(g3(xn))−A3(g3(xn−1)))+r3(B3(un,3)−B3(un−1,3))‖

≤ 1

µ3λ23
[‖g3(xn)−g3(xn−1)‖+r3‖A3(g3(xn))−A3(g3(xn−1))‖+r3‖B3(un,3)−B3(un−1,3)‖]

≤ 1

µ3λ23
[λ3‖xn − xn−1‖+ r3λ3ρ3‖xn − xn−1‖+ r3σ3‖un,3 − un−1,3‖]

≤ 1

µ3λ23
[λ3‖xn − xn−1‖+ r3λ3ρ3‖xn − xn−1‖+ r3σ3(1 + εn)η3‖xn − xn−1‖]

≤ 1

µ3λ23
[λ3 + r3(λ3ρ3 + σ3(1 + εn)η3)]‖xn − xn−1‖

Hence

‖zn − zn−1‖ ≤
1

µ3λ23
θn,3‖xn − xn−1‖, (19)
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where θn,3 = λ3 + r3(λ3ρ3 + σ3(1 + εn)η3).
Combining (17) and (19), we have

‖yn − yn−1‖ ≤
1

µ2µ3λ22λ
2
3

θn,2θn,3‖xn − xn−1‖. (20)

From (15) to (20), we have

‖xn+1 − xn‖ ≤ [θ0 + (θ0 + θn,1 + r1ρ1λ1)
1

µ2µ3λ22λ
2
3

θn,2θn,3]‖xn − xn−1‖, (21)

where

θ0 = p1 =
√

1− 2µ1λ21 + λ21,

θn,1 =
√

1− 2r1ξ1σ2
1η

2
1(1 + εn)2 + r21σ

2
1η

2
1(1 + εn)2,

θn,2 = λ2 + r2(ρ2λ2 + σ2η2(1 + εn)) and

θn,3 = λ3 + r3(ρ3λ3 + σ3η3(1 + εn)).

Hence
‖xn+1 − xn‖ ≤ θn‖xn − xn−1‖. (22)

where

θn = [θ0 + (θ0 + θn,1 + r1ρ1λ1)
1

µ2µ3λ22λ
2
3

θn,2θn,3].

Letting

θ = (θ0 + (θ0 + θ1 + r1ρ1λ1)
1

µ2µ3λ22λ
2
3

θ2θ3),

where

θ0 = p1 =
√

1− 2µ1λ21 + λ21,

θ1 =
√

1− 2r1ξ1σ2
1η

2
1 + r21σ

2
1η

2
1 ,

θ2 = λ2 + r2(ρ2λ2 + σ2η2)

θ3 = λ3 + r3(ρ3λ3 + σ3η3),

from (22) we have
‖xn+1 − xn‖ ≤ θ‖xn − xn−1‖. (23)

By the condition (iv), we have θ < 1. It follows from (23) that ‖xn+1−xn‖ → 0
as n → ∞, which implies that {xn} is a Cauchy sequence in H. By (20), it
follows that {yn} is a Cauchy sequence in H and from (19) {zn} is also a Cauchy
sequence in H. Moreover, since Ti is ηi-Lipschitz continuous we have that {un,i}
is also a Cauchy sequence in H for i = 1, 2, 3. Thus there exist x∗, y∗, z∗ and
u∗i ∈ H such that xn → x∗, yn → y∗, zn → z∗ and un,i → u∗i as n → ∞ for
i = 1, 2, 3. Since gi, Ai, Bi, Ti, J

ri
MI

are continuous for i = 1, 2, 3 in (5) we have

g3(z∗) = Jr3M3
[g3(x∗)− r3(A3(g3(x∗))−B3(u∗3))],

g2(y∗) = Jr2M2
[g2(z∗)− r2(A2(g2(z∗))−B2(u∗2))],

x∗ = x∗ − g1(x∗)− Jr1M1
[g1(y∗)− r1(A1(g1(y∗))−B1(u∗1))].
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Hence from (1), (4) and (5), it follows that (x∗, y∗, z∗, u∗i ) ∈ SGNMVID(A,B,T, g)
is a solution of the system of generalized nonlinear mixed variational inclusions
(1). Finally, we prove that u∗1 ∈ T1(y∗). Indeed we have

d(u∗1, T1(y∗)) = inf{‖u∗1 − w‖ : w ∈ T1(y∗)}
≤ ‖u∗1 − un,1‖+ d(un,1, T1(y∗))

≤ ‖u∗1 − un,1‖+D(T1(yn), T1(y∗))

≤ ‖u∗1 − un,1‖+ η1(1 + εn)‖yn − y∗‖ → 0 as n→∞.

Thus d(u∗1, T1(y∗)) = 0. Since T1(y∗) ∈ CB(H), we must have u∗1 ∈ T1(y∗).
Similarly, we can show that u∗2 ∈ T2(z∗), u∗3 ∈ T3(x∗). This complete the proof.

�
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