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GLOBAL REGULARITY OF SOLUTIONS

TO QUASILINEAR CONORMAL DERIVATIVE PROBLEM

WITH CONTROLLED GROWTH

Doyoon Kim

Abstract. We prove the global regularity of weak solutions to a conor-
mal derivative boundary value problem for quasilinear elliptic equations
in divergence form on Lipschitz domains under the controlled growth con-
ditions on the low order terms. The leading coefficients are in the class
of BMO functions with small mean oscillations.

1. Introduction

We consider the conormal derivative boundary value problem

(1)

{
−Di (Aij(x, u)Dju+ ai(x, u)) = b(x, u,∇u) in Ω,

(Aij(x, u)Dju+ ai(x, u)) · ν(x) = 0 on ∂Ω.

Here the equation is a quasilinear elliptic equation in divergence form, Ω is a
bounded Lipschitz domain in R

d, d ≥ 2, with a small Lipschitz constant, and
ν(x) is the outward normal vector to the surface ∂Ω. We call u ∈ W 1

2 (Ω) a
weak solution to (1) if

∫

Ω

(Aij(x, u)Dju+ ai(x, u))Diφdx =

∫

Ω

b(x, u,∇u)φdx

for any φ ∈ W 1
2 (Ω).

In this paper we study the global regularity of weak solutions to (1) under the
controlled growth conditions (explained below) on ai and b. The nonlinear terms
Aij(x, u), ai(x, u), b(x, u, ξ) are of Caratheódory type, i.e., they are measurable
in x ∈ R

d for all (u, ξ) ∈ R× R
d, and continuous in (u, ξ) ∈ R× R

d for almost
all x ∈ R

d. The leading coefficients Aij are bounded and uniformly elliptic,

Received August 9, 2011; Revised March 3, 2012.
2010 Mathematics Subject Classification. 35J62, 35J25, 35B65.
Key words and phrases. quasilinear elliptic equations, conormal derivative boundary value

problem, BMO coefficients, Sobolev spaces.
This work was supported by a grant from the Kyung Hee University in 2010 (KHU-

20101825).

c©2012 The Korean Mathematical Society

1273



1274 DOYOON KIM

that is, for some constant µ ∈ (0, 1],

(2) |Aij | ≤ µ−1, Aijξiξj ≥ µ|ξ|2 ∀ξ ∈ R
d.

We also assume that Aij(x, u) are uniformly continuous in u and have small
mean oscillations with respect to x. Throughout the paper, we set

(3) γ =





2d

d− 2
, d > 2,

any number bigger than 2, d = 2.

By the controlled growth conditions, we mean

|ai(x, u)| ≤ µ1(|u|
λ1 + f), |b(x, u,∇u)| ≤ µ2(|∇u|

λ2 + |u|λ3 + g)

for some constants µ1, µ2 > 0, where λ1 = γ/2, λ2 = 2(1 − 1/γ), λ3 = γ − 1,
and

f ∈ L2(Ω), g ∈ L
γ

γ−1 (Ω).

Since u ∈W 1
2 (Ω) implies u ∈ Lγ(Ω), the controlled growth conditions guaran-

tee the convergence of the integrals in the definition of weak solutions above.
If 1 ≤ λ1 < γ/2, 1 ≤ λ2 < 2(1− 1/γ), 1 ≤ λ3 < γ− 1, we say that the equation
(1) satisfies the strictly controlled growth conditions. As mentioned in [6], the
controlled growth conditions are optimal (see, for instance, a counterexample
in [13]) unless some additional boundedness conditions on weak solutions are
imposed.

Under the above assumptions, we prove that weak solutions to (1) are glob-

ally Hölder continuous with a Hölder exponent depending only on the dimension
and the integrability of f and g. Indeed, as noted in [13] and [6], we have an
explicit description of the Hölder exponent in terms of σ and τ if f ∈ Lσ(Ω)
and g ∈ Lτ (Ω), σ > d, τ > d/2, whereas such an explicit Hölder exponent is
not shown in the De Giorgi-Moser-Nash theory. To obtain the desired regular-
ity, we prove higher integrability of solutions. Precisely, we show that a weak
solution to (1) is a member ofW 1

p (Ω), where p > d is determined only by σ and
τ above. Then the globally Hölder continuity of the weak solution follows eas-
ily from the Sobolev embedding theorem. In addition to the fact that the low
order terms satisfy the controlled growth conditions, note that the leading co-
efficients satisfy only a small BMO condition as functions of x ∈ R. Thus they
are not necessarily continuous in x. We remark that in general global regularity
cannot be expected for systems (see [7, 16]), and even for partial regularities
usually one requires the leading coefficients to possess certain regularity in all
involved variables (usually uniform continuity).

When the Dirichlet boundary condition is imposed, Dong and the author
established in [6] a similar global Hölder continuity of weak solutions to equa-
tions as in (1) with the same controlled growth conditions. In [6] we first
proved reverse Hölder inequalities for weak solutions to elliptic and parabolic
quasilinear equations, which give slightly better integrability of weak solutions.
Specifically, for example, we show that weak solutions in W 1

2 (Ω) to elliptic
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quasilinear equations are in W 1
p (Ω) for p > 2. The exponent p may not be

sufficiently large to give a Hölder continuity of weak solutions via the Sobolev
embedding theorem. However, the fact that p > 2 is enough to give the bound-
edness and Hölder continuity of weak solutions by making use of well-known
results on quasilinear equations with zero boundary conditions (see [10, 11]).
Here the Hölder continuity is for a uniform continuity of weak solutions, but is
not necessarily strong enough to give the desired optimal Hölder regularity of
solutions. Then using Lp-estimates for linear equations, we increase the expo-
nent p until we have sufficient integrability of solutions guaranteeing the global
optimal Hölder regularity of solutions.

In this paper, we continue to investigate the same type of quasilinear equa-
tions, but the boundary condition is of the Neumann type. As in [6], the
key ingredients of the proofs are a reverse Hölder inequality, boundedness,
and Hölder continuity of weak solutions to quasilinear equations, as well as
Lp-theory of linear equations with conormal derivative boundary conditions.
Reverse Hölder inequalities were obtained by Arkhipova [1, 2, 3] for quasilin-
ear equations/systems with conormal derivative boundary conditions under the
controlled growth conditions, which we shall briefly discuss in Section 8. As to
the boundedness and Hölder continuity of weak solutions, in [6] we referred to
the relevant results in [11], where the desired properties of solutions are well
explained when the boundary condition is of the Dirichlet type. When conor-
mal derivative boundary conditions are considered, boundedness and Hölder
continuity results can be found in [10] and [12] with possibly different growth
conditions. In particular, a Hölder continuity estimate is proved in [10, Chapter
10] using a boundary flattening argument when the domain is C1,1. Recently,
Winkert studied in [17] the boundedness of weak solutions to quasilinear ellip-
tic equations satisfying natural growth conditions with a conormal derivative
boundary condition. The growth conditions correspond to the case λi = 1
above if weak solutions are in W 1

2 (Ω). Winkert and Zacher treated in [18]
the global boundedness of weak solutions to a conormal derivative problem for
nonlinear elliptic equations, where their nonstandard growth conditions cover
the strictly controlled growth conditions. Since these results cannot be ap-
plied directly in the proof of the main theorem (Theorem 2.5), we give detailed
proofs about the boundedness and Hölder continuity of solutions to quasilinear
equations having the controlled growth conditions and zero conormal derivative

boundary value when the domain is Lipschitz. Regarding the boundary regu-
larity, it may be possible to consider more general regularity conditions than
Lipschitz.

The lines of the proof for the boundedness are based on De Giorgi’s iteration
technique and similar to those in [10, 12, 18]. For the Hölder continuity of weak
solutions we follow the argument in [10]. However, in both cases one needs to
take care of the conormal boundary condition. In particular, contrary to the
Dirichlet case, in the conormal derivative case the technique that extends a
solution to be zero outside the domain is not available.
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We then run, as in [6], an iteration argument to get the desired Lp regularity
by applying Lp estimates for linear equations repeatedly. Note that a similar
argument was used by Palagachev in [13], where he derived the global Hölder
regularity of solutions. The equations considered in [13] are quasilinear elliptic
equations with the Dirichlet boundary condition under the strictly controlled
growth conditions, and the leading coefficients are in the class of vanishing
mean oscillations (VMO). Also see [14] and [15], where the authors discuss the
global Hölder regularity of solutions to Dirichlet problems on Reifenberg flat
domains when the leading coefficients have small mean oscillations.

As a final remark, we refer the reader to the paper [6] and references therein
for more information about various growth conditions and the (partial) regul-
arity of weak solutions to divergence type elliptic and parabolic equations/sys-
tems.

This paper is organized as follows. In Section 2 we introduce our assumptions
and the main results of this paper. Then we obtain the boundedness and Hölder
continuity of solutions in Sections 3 and 4, respectively. In Section 5 we present
some Lp-theory for linear equations which is necessary in the proof of Theorem
2.5 in Section 6. Section 7 is an independent section describing a function class,
functions in which satisfy Hölder continuity. Section 8 is devoted to a reverse
Hölder inequality.

2. Main results

For a given function u = u(x) defined on Ω ⊂ R
d, we use Diu for ∂u/∂xi.

For α ∈ (0, 1], we define

|u|α,Ω = |u|0,Ω + [u]α,Ω := sup
x∈Ω

|u(x)|+ sup
x,y∈Ω
x 6=y

|u(x)− u(y)|

|x− y|α
.

By Cα(Ω) we denote the set of all bounded measurable functions u on Ω for
which |u|α,Ω is finite. We write N(d, p, . . .) if N is a constant depending only on
the prescribed quantities d, p, . . .. Throughout the paper, the domain Ω satisfies
the following Lipschitz condition, where the constant β will be specified later.
Unless specified otherwise, Ω is always bounded.

Assumption 2.1 (β). There is a constant R0 ∈ (0, 1] such that, for any
x0 ∈ ∂Ω and r ∈ (0, R0], there exists a Lipschitz function ϕ: R

d−1 → R such
that

Ω ∩Br(x0) = {x = (x1, x
′) ∈ Br(x0) : x1 > ϕ(x′)}

and

sup
x′,y′∈B′

r(x
′

0
),x′ 6=y′

|ϕ(y′)− ϕ(x′)|

|y′ − x′|
≤ β

in an appropriate coordinate system, where B′
r(x

′
0) = {x′ ∈ R

d−1 : |x′ − x′0| <
r}.
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Let us recall the controlled growth conditions on the lower order terms:

(4) |ai(x, u)| ≤ µ1(|u|
γ/2+ f), |b(x, u,∇u)| ≤ µ2(|∇u|

2(1−1/γ)+ |u|γ−1+ g),

where µ1, µ2, µ3 > 0 are some constants, γ is defined as in (3), and

f ∈ L2(Ω), g ∈ L γ
γ−1

(Ω).

Theorem 2.2 (Reverse Hölder inequality). Let u ∈ W 1
2 (Ω) be a weak solution

to (1). Suppose in addition that f ∈ Lσ(Ω) and g ∈ Lτ (Ω) for some σ ∈ (2,∞)
and τ ∈ (γ/(γ − 1),∞). Then there exists p > 2 depending only on d, µ, µ1,

µ2, γ, u, and β, such that

‖u‖Lγp/2(Ω) + ‖Du‖Lp(Ω) ≤ N,

where N = N(d, µ, µ1, µ2, σ, τ, γ, u, ‖f‖Lσ(Ω), ‖g‖Lτ(Ω), β, R0, diamΩ).

This is proved in [1] for d > 2. Also see [3] for a linear case with d > 2.
For the reader’s convenience, we give the key proposition (Proposition 8.2) in
Section 8 which readily implies the theorem including the case d = 2. As in
[1], Theorem 2.2 is true for elliptic systems under the same conditions.

To get the optimal global regularity for the equation (1), we need a few more
assumptions. Let

A#
R = sup

1≤i,j≤d
sup

x0∈R
d

z0∈R,r≤R

–

∫

Br(x0)

–

∫

Br(x0)

|Aij(x, z0)−Aij(y, z0)| dx dy.

The following assumption indicates that Aij(x, ·) have small mean oscillations
as functions of x ∈ R

d.

Assumption 2.3 (ρ). There is a constant R1 ∈ (0, 1] such that A#
R1

≤ ρ.

We also need a continuity assumption on Aij(·, z) as functions of z ∈ R.

Assumption 2.4. There exists a continuous nonnegative function ω(r) defined
on [0,∞) such that ω(0) = 0 and

|Aij(x0, z1)−Aij(x0, z2)| ≤ ω (|z1 − z2|)

for all x0 ∈ R
d and z1, z2 ∈ R.

Set

q∗ =





qd

d− q
if q < d,

arbitrary large number > 1 if q ≥ d.

Note that if q < d, then 1/q∗ = 1/q − 1/d. We now state the main result of
this paper.

Theorem 2.5 (Optimal global regularity). Let u ∈ W 1
2 (Ω) be a weak solution

to (1). Suppose in addition that f ∈ Lσ(Ω) and g ∈ Lτ (Ω) for some σ ∈
(d,∞) and τ ∈ (d/2,∞). Then there exist positive β = β(d, µ, σ, τ) and ρ =
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ρ(d, µ, σ, τ) such that, under Assumption 2.1 (β) and Assumption 2.3 (ρ), we
have

(5) ‖u‖W 1
p (Ω) ≤ N, where p = min{σ, τ∗} > d

and N = N(d, µ, µ1, µ2, σ, τ, γ, u, ‖f‖Lσ(Ω), ‖g‖Lτ(Ω), R1, ω, R0, diamΩ). Con-

sequently, we have u ∈ Cα(Ω) for α = 1− d/p.

3. Boundedness of solutions under the controlled growth conditions

In the proof of Theorem 2.5 it is essential to have a Hölder continuity of weak
solutions to (1). To achieve this, in this section we prove that weak solutions
are globally bounded.

Lemma 3.1. Under the conditions (2) and (4) with f ∈ Lσ(Ω) and g ∈ Lτ (Ω)
for some σ ∈ (d,∞) and τ ∈ (d/2,∞), we have

(6) (Aijξj + ai) ξi ≥
µ

2
|ξ|2 −N |u|γ −N |u|2ψ(x),

(7) |b(x, u, ξ)u| ≤
µ

4
|ξ|2 +N |u|γ +N |u|2ψ(x)

for ξ ∈ R
d and |u| ≥ 1, where ψ ∈ Lq(Ω), q := min{σ/2, τ} > d

2 , and N =
N(µ, µ1, µ2).

Proof. To prove (6), we first see

|ai(x, u)ξi| ≤ µ1|ξ|(|u|
γ/2 + f)

≤ εµ1|ξ|
2 +N(ε)µ1|u|

γ +N(ε)µ1|f |
2

≤ εµ1|ξ|
2 +N(ε)µ1|u|

γ +N(ε)µ1|u|
2|f |2,

provided that |u| ≥ 1. By taking ε = µ/(2µ1), we have

(Aij(x, u)ξj + ai(x, u)) ξi ≥
µ

2
|ξ|2 −N(µ, µ1)|u|

γ −N(µ, µ1)|u|
2|f |2.

Now we take ψ = |f |2 + g. Then the inequality (6) follows.
For the inequality (7), we have

|b(x, u, ξ)||u| ≤ µ2

(
|u||ξ|2(1−1/γ) + |u|γ + |u|g

)

≤ µ2

(
ε|ξ|2 +N(ε)|u|γ + |u|2g

)

=
µ

4
|ξ|2 +N(µ, µ2)|u|

γ +N(µ, µ2)|u|
2g

for |u| ≥ 1. Upon recalling the definition of ψ we obtain the desired inequality.
�

Let σ, τ be numbers satisfying σ ∈ (d,∞) and τ ∈ (d/2,∞), respectively.
Find q1 ∈ (1,∞) satisfying

(8)
1

2
<

1

q1
≤
γ

4

(
1−

2(γ − 2)

γp

)
,

1

2
<

1

q1
≤
γ

4

(
1−

1

min{σ/2, τ}

)
,
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where p > 2 is the exponent from Theorem 2.2. Indeed, this is possible since
p > 2 and

1

2
=
γ

4

(
1−

1

d/2

)
<
γ

4

(
1−

1

min{σ/2, τ}

)
if d > 2.

When d = 2, we take γ > 2 so that

γ >
2min{σ/2, τ}

min{σ/2, τ} − 1
.

Note 1 < q1 < 2 and γq1 > 4.

Lemma 3.2. Let u ∈ W 1
2 (Ω) be a solution to (1) and f ∈ Lσ(Ω), g ∈ Lτ (Ω)

for some σ ∈ (d,∞) and τ ∈ (d/2,∞). Then

∫

Ak

|∇u|2 dx ≤ N

(∫

Ak

|u|γq1/2 dx

) 4

γq1
(∫

Ak

|u|
γq1(γ−2)

γq1−4 dx

) γq1−4

γq1

+

(∫

Ak

|u|γq1/2 dx

) 4

γq1
(∫

Ak

ψ
γq1

γq1−4 dx

) γq1−4

γq1

,

where q1 is from (8), N = N(µ, µ1, µ2), and

Ak = {x ∈ Ω : u(x) > k}, k ≥ 1, ψ = |f |2 + g.

Proof. First note that by Theorem 2.2, the definition of ψ, and (8), i.e.,

γq1(γ − 2)

γq1 − 4
≤ γp/2,

γq1
γq1 − 4

≤ min{σ/2, τ},

we have ∫

Ak

|u|
γq1(γ−2)

γq1−4 dx <∞,

∫

Ak

ψ
γq1

γq1−4 dx <∞.

By taking φ = (u− k)+ ∈W 1
2 (Ω) as a test function, we obtain

∫

Ak

(AijDjuDiu+ aiDiu) dx =

∫

Ak

b(u− k) dx.

From Lemma 3.1 it follows that

LHS ≥
µ

2

∫

Ak

|∇u|2 dx−N

∫

Ak

|u|γ dx−N

∫

Ak

|u|2ψ dx,

and

RHS ≤

∫

Ak

|b||u| dx ≤
µ

4

∫

Ak

|∇u|2 dx+N

∫

Ak

|u|γ dx+

∫

Ak

|u|2ψ dx,

where N = N(µ, µ1, µ2). Combining the above two inequalities gives
∫

Ak

|∇u|2 dx ≤ N

∫

Ak

|u|γ dx+N

∫

Ak

|u|2ψ dx.
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Then we use Hölder’s inequality to obtain the desired inequality (recall that
γq1/4 > 1). That is,

∫

Ak

|u|γ dx =

∫

Ak

|u|2|u|γ−2 dx

≤

(∫

Ak

|u|2
γq1
4 dx

) 4

γq1
(∫

Ak

|u|
γq1(γ−2)

γq1−4 dx

) γq1−4

γq1

,

∫

Ak

|u|2ψ dx ≤

(∫

Ak

|u|2
γq1
4 dx

) 4

γq1
(∫

Ak

ψ
γq1

γq1−4 dx

) γq1−4

γq1

.
�

A similar estimate as in the above lemma is needed on the set Bk = {x ∈
Ω : u(x) < k}.

Lemma 3.3. Let u ∈ W 1
2 (Ω) be a solution to (1) and f ∈ Lσ(Ω), g ∈ Lτ (Ω)

for some σ ∈ (d,∞) and τ ∈ (d/2,∞). Then

∫

Bk

|∇u|2 dx ≤ N

(∫

Bk

|u|γq1/2 dx

) 4

γq1
(∫

Bk

|u|
γq1(γ−2)

γq1−4 dx

) γq1−4

γq1

+

(∫

Bk

|u|γq1/2 dx

) 4

γq1
(∫

Bk

ψ
γq1

γq1−4 dx

) γq1−4

γq1

,

where q1 is from (8), N = N(µ, µ1, µ2), and

Bk = {x ∈ Ω : u(x) < k}, k ≤ −1, ψ = |f |2 + g.

Proof. The proof follows from that of Lemma 3.2 with φ = (k − u)+. �

In the proof of the boundedness of weak solutions, we need the following
well-known result. It can be found, for example, in [10, 11] if δ1 = δ2.

Lemma 3.4. Let {Ψn}, n = 0, 1, 2, . . ., be a sequence of positive numbers

satisfying

Ψn+1 ≤ Kbn
(
Ψ1+δ1

n +Ψ1+δ2
n

)
, n = 0, 1, 2, . . . ,

for some b > 1, K > 0, and δ2 ≥ δ1. If

Ψ0 ≤ (2K)
− 1

δ1 b
− 1

δ2
1 ,

then

Ψn ≤ (2K)−
1

δ1 b
− 1

δ2
1

− n
δ1 , n ∈ N.

Thus, in particular, Ψn → 0 as n→ ∞.

In the following theorem we prove the boundedness of weak solutions to (1)
using an iteration argument of De Giorgi type.
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Theorem 3.5. Let u ∈W 1
2 (Ω) be a solution to (1) and f ∈ Lσ(Ω), g ∈ Lτ (Ω)

for some σ ∈ (d,∞) and τ ∈ (d/2,∞). Then for some number M , depending

only on d, µ, µ1, µ2, γ, p, σ, τ , u, ‖f‖Lσ(Ω), ‖g‖Lτ(Ω), β, R0, and diamΩ, we
have

‖u‖L∞(Ω) ≤M.

Here p is from Theorem 2.2.

Proof. We take an increasing sequence

kn = k

(
2−

1

2n

)
, n = 0, 1, 2, . . . ,

where k ≥ 1 will be specified later. Fix q1 so that it satisfies (8). Then set

γ∗ =
γq1
2

> 2, Ψn :=

∫

Akn

(u− kn)
γ∗ dx,

where Akn = {x ∈ Ω : u(x) > kn}. Note that γ
γ∗

= 2
q1
> 1 since q1 ∈ (1, 2).

Using the fact that Akn+1
⊂ Akn , we have

Ψn =

∫

Akn

(u − kn)
γ∗ dx ≥

∫

Akn+1

(u− kn)
γ∗ dx

≥

∫

Akn+1

uγ∗

(
1−

kn
kn+1

)γ∗

dx

≥
1

2γ∗(n+2)

∫

Akn+1

uγ∗ dx.

That is,

(9)

∫

Akn+1

uγ∗ dx ≤ 2γ∗(n+1)Ψn.

We also have

(10)

|Akn+1
| ≤

∫

Akn+1

(
u− kn

kn+1 − kn

)γ∗

dx

≤

∫

Akn

(
2n+1

k

)γ∗

(u− kn)
γ∗ dx =

2γ∗(n+1)

kγ∗

Ψn.

We now observe that by Hölder’s inequality

(11)

Ψn+1 =

∫

Akn+1

(u − kn+1)
γ∗ dx

≤

(∫

Akn+1

(u− kn+1)
γ dx

) γ∗
γ

|Akn+1
|
γ−γ∗

γ .
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Note that by the Sobolev embedding theorem,

(12)

(∫

Akn+1

(u− kn+1)
γ dx

)1/γ

≤ N

(∫

Ω

|∇(u− kn+1)+|
2 dx

)1/2

+N

(∫

Ω

|(u− kn+1)+|
2 dx

)1/2

≤ N

(∫

Akn+1

|∇u|2 dx

)1/2

+N

(∫

Akn+1

|u− kn+1|
2 dx

)1/2

:= I1 + I2,

where N = N(d, γ, β,R0, diamΩ). To estimate I1 in (12), we use Lemma 3.2
and (9) (recall that γ∗ = γq1/2) to get

(13)

∫

Akn+1

|∇u|2 dx ≤ N

(∫

Akn+1

uγ∗ dx

)2/γ∗

≤ N22(n+1)Ψ
2

γ∗
n ,

where

N = N

(
µ, µ1, µ2, γ, p, σ, τ,

∫

Ω

|u|γp/2 dx,

∫

Ω

ψmin{σ/2,τ} dx

)
.

Using the facts that γ∗ > 2 and Ψn+1 ≤ Ψn, the term I2 in (12) is estimated
as
(14)(∫

Akn+1

|u − kn+1|
2 dx

)1/2

≤ |Akn+1
|1/2−1/γ∗

(∫

Akn+1

(u− kn+1)
γ∗ dx

)1/γ∗

= |Akn+1
|1/2−1/γ∗Ψ

1/γ∗

n+1

≤ |Akn+1
|1/2−1/γ∗Ψ1/γ∗

n .

Combining (11), (12), (13), (14), and (10), we obtain

Ψn+1 ≤ N |Akn+1
|
γ−γ∗

γ

[
2γ∗(n+1)Ψn + |Akn+1

|
γ∗−2

2 Ψn

]

≤ N

(
2γ∗(n+1)

kγ∗

Ψn

) γ−γ∗
γ

2γ∗(n+1)Ψn

+N

(
2γ∗(n+1)

kγ∗

Ψn

) γ∗(γ−2)

2γ

Ψn

=:J1 + J2,

where

J1 = Nk−
γ∗(γ−γ∗)

γ 2γ∗( γ−γ∗
γ +1)2γ∗( γ−γ∗

γ +1)nΨ
1+ γ−γ∗

γ
n ,

J2 = Nk−
γ2
∗
(γ−2)

2γ 2
γ2
∗
(γ−2)

2γ 2
γ2
∗
(γ−2)

2γ nΨ
1+γ∗(γ−2)

2γ
n .
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Set

δ1 =
γ − γ∗
γ

, δ2 =
γ∗(γ − 2)

2γ
,

b = max

{
2γ∗( γ∗(γ−2)

2γ +1), 2
γ2
∗
(γ−2)

2γ

}
, K = Nk−

γ∗(γ−γ∗)

γ b.

Then δ2 ≥ δ1 > 0, b > 1, and

J1 ≤ KbnΨ1+δ1
n , J2 ≤ KbnΨ1+δ2

n .

Hence

Ψn+1 ≤ Kbn
(
Ψ1+δ1

n +Ψ1+δ2
n

)
.

Observe that

Ψ0 =

∫

u>k

(u − k)γ∗ dx

≤

∫

Ω

uγ∗

+ dx

=

(
(2K)

1

δ1 b
1

δ2
1

∫

Ω

uγ∗

+ dx

)
(2K)−

1

δ1 b
− 1

δ2
1

≤ (2K)
− 1

δ1 b
− 1

δ2
1

provided that

(2K)
1

δ1 b
1

δ2
1

∫

Ω

uγ∗

+ dx ≤ 1,

that is, if we take k ≥ 1 so that

k = max

{
1, 2

1

γ∗δ1 N
1

γ∗δ1 b
1+δ1
γ∗δ2

1

(∫

Ω

uγ∗

+ dx

)1/γ∗

}
.

Then by Lemma 3.4 it follows that u ≤ 2k on Ω. To prove that u is bounded
below, we repeat the above argument using Lemma 3.3. The theorem is proved.

�

4. Hölder continuity

The inequality (6) holds true for |u| ≥ 1. However, from the proof of Lemma
3.1 it is possible to have

(15) (AijDju+ ai)Diu ≥
µ

2
|∇u|2 −N |u|γ −N |f |2

for all values of u, where N = N(µ, µ1). Observe that from the condition (4)
on b, we obtain

|b(x, u,∇u)(u− k)+| ≤ µ2(u− k)+

(
|∇u|2(1−1/γ) + |u|γ−1 + g

)

≤
µ

4
|∇u|2 +N(µ, µ2)(u − k)γ+ + µ2(u− k)+

(
|u|γ−1 + g

)
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≤
µ

4
|∇u|2 +N

(
1 + |u|γ−1 + g

)

for k ≥ u− 1, where N = N(µ, µ2). By the same reasoning

|b(x, u,∇u)(k − u)+| ≤
µ

4
|∇u|2 +N

(
1 + |u|γ−1 + g

)

for k ≤ u+ 1. Set

(16) ϕ0 = |u|γ + |f |2, ϕ1 = |u|γ/2 + f, ϕ2 = |u|γ−1 + g + 1.

Then by (15) and the condition on ai we have

(17) (AijDju+ ai)Diu ≥
µ

2
|∇u|2 −Nϕ0, |ai| ≤ Nϕ1

for all values of u, where N = N(µ, µ1). We also have

(18) |b(x, u,∇u)(u− k)+| ≤
µ

4
|∇u|2 +Nϕ2 for k ≥ u− 1,

|b(x, u,∇u)(k − u)+| ≤
µ

4
|∇u|2 +Nϕ2 for k ≤ u+ 1,

where N = N(µ, µ2). As shown in Theorem 3.5, |u| ≤ M on Ω for some
constant M . Thus, if f ∈ Lσ(Ω) and g ∈ Lτ (Ω) for some σ ∈ (d,∞) and
τ ∈ (d/2,∞) as in Theorem 2.5, we have

ϕ0, ϕ2 ∈ Lq(Ω) ϕ1 ∈ L2q(Ω), q = min{σ/2, τ} > d/2.

Lemma 4.1. Let ζ ∈W 1
2 (R

d) have a compact support, and k be a real number

such that k ≥ u − 1 on the support of ζ. Let u ∈ W 1
2 (Ω) be a solution to (1)

and f ∈ Lσ(Ω), g ∈ Lτ (Ω) for some σ ∈ (d,∞) and τ ∈ (d/2,∞). Then we

have

(19)

∫

{u>k}∩Ω

|ζ∇u|2 dx

≤ N

∫

{u>k}∩Ω

|ζx|
2(u − k)2 dx

+N

(∫

{u>k}∩Ω

ζ2q̄ dx

)1/q̄ (∫

{u>k}∩Ω

(
ϕ0 + ϕ2

1 + ϕ2

)q
dx

)1/q

,

where ϕi, i = 0, 1, 2, are those in (16), q = min{σ/2, τ}, 1/q̄ + 1/q = 1, and
N = N(µ, µ1, µ2).

Now if k ≤ u+ 1 on the support of ζ, then

(20)

∫

{u<k}∩Ω

|ζ∇u|2 dx

≤ N

∫

{u<k}∩Ω

|ζx|
2(k − u)2 dx

+N

(∫

{u<k}∩Ω

ζ2q̄ dx

)1/q̄ (∫

{u<k}∩Ω

(
ϕ0 + ϕ2

1 + ϕ2

)q
dx

)1/q

.
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Proof. Using φ = ζ2(u − k)+ ∈W 1
2 (Ω) as a test function, we obtain

(21)

∫

Ω

(Aij(x, u)Dju+ ai(x, u))φxj dx =

∫

Ω

b(x, u,∇u)φdx,

which is equal to
∫

{u>k}∩Ω

(AijDju+ ai) ζ
2Dju dx

=

∫

{u>k}∩Ω

bζ2(u− k) dx−

∫

{u>k}∩Ω

(AijDju+ ai) 2ζζxj (u− k) dx.

Note that by (17)
∫

{u>k}∩Ω

ζ2 (AijDju+ ai)Dju dx

≥
µ

2

∫

{u>k}∩Ω

|ζ∇u|2 dx−N

∫

{u>k}∩Ω

ζ2ϕ0 dx

and

−

∫

{u>k}∩Ω

(AijDju+ ai) 2ζζxj (u− k) dx

≤
µ

8

∫

{u>k}∩Ω

|ζ∇u|2 dx +N

∫

{u>k}∩Ω

(
|ζx|

2(u− k)2 + ζ2ϕ2
1

)
dx.

Since k ≥ u− 1 on the support of ζ, by (18)
∫

{u>k}∩Ω

bζ2(u− k) dx ≤
µ

4

∫

{u>k}∩Ω

|ζ∇u|2 dx+N

∫

{u>k}∩Ω

ζ2ϕ2 dx.

Hence (21) is written as
∫

{u>k}∩Ω

|ζ∇u|2 dx

≤ N

∫

{u>k}∩Ω

|ζx|
2(u − k)2 dx+N

∫

{u>k}∩Ω

ζ2
(
ϕ0 + ϕ2

1 + ϕ2

)
dx,

where N = N(µ, µ1, µ2). Finally, by applying Hölder’s inequality we obtain
the desired inequality in the lemma. The second assertion follows by the same
reasoning as above with φ = ζ2(k − u)+. �

Proposition 4.2. Let u ∈ W 1
2 (Ω) be a solution to (1) and f ∈ Lσ(Ω), g ∈

Lτ (Ω) for some σ ∈ (d,∞) and τ ∈ (d/2,∞). Then u ∈ Cα0(Ω) and

|u|α0,Ω ≤ N,

where α0 ∈ (0, 1) and N depend only on the parameters for the bound of u in

Theorem 3.5.
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Proof. Let r0 > 0 and Br0 ⊂ Ω. For r ≤ r0 and δ ∈ (0, 1), let Br and Br(1−δ)

be balls concentric with Br0 . Let ζ be an infinitely differentiable function such
that 0 ≤ ζ ≤ 1, ζ = 1 on Br(1−δ) and ζ = 0 outside Br. We may assume that
|Dζ| ≤ 1/(δr). Then from (19) we obtain

(22)

∫

{u>k}∩Br(1−δ)

|∇u|2 dx

≤ C

(
1

δ2r2−d/q
max

{u>k}∩Br

(u− k)2 + 1

)
|{u > k} ∩Br|

1−1/q

for Br ⊂ Ω and k ≥ maxBr u − 1, where δ ∈ (0, 1), q = min{σ/2, τ} > d/2,
and the constant C depends only on the parameters for the bound of u in
Theorem 3.5. Using (20) we also obtain (39) for u. Hence u ∈ H(Ω,M,C, 1, q)
in Definition 7.1 when Ω = Br0 . Therefore, we have the oscillation estimate in
Theorem 7.5, which indeed implies

(23) oscBru ≤ N

(
r

r0

)α

oscBr0
u+Nrα1

0 rα

for all r ≤ r0, where α > 0, α1 > 0, and N > 0 depend only on d, C, and q.
Let x0 ∈ ∂Ω and r0 < R0, where R0 is from Assumption 2.1. Without loss of

generality we assume that x0 = 0 and ϕ(0) = 0, where ϕ is a Lipschitz function
such that ΩR0

= Ω ∩ BR0
= {x ∈ BR0

: x1 > ϕ(x′)}. Under this assumption,
since |ϕ(x′)| ≤ β|x′|, we observe that

(24)

Φ(Br) ⊂ Ωrβ for r <
R0√

2(1 + β2)
,

Φ−1(Ωr) ⊂ Brβ for r <
R0

2(1 + β2)
,

where Φ(y) = (y1 + ϕ(y′), y′) and rβ = r
√

2(1 + β2). Set v(y) := u(Φ(y)) and
r1 := r0√

2(1+β2)
. From (24) we have v ∈ W 1

2 (B
+
r1). For r ∈ (0, r1], let ψ be an

infinitely differentiable function such that 0 ≤ ψ ≤ 1, ψ = 0 on Br(1−δ), and
ψ = 0 outside Br. We may assume that |Dψ| ≤ 1/(δr). By using

ζ(x) = ψ(Φ−1(x)),

we obtain from (19)

∫

{u>k}∩Ω

|ζ∇u|2 dx ≤ N

∫

{u>k}∩Ω

|ζx|
2(u− k)2 dx+ C

(∫

{u>k}∩Ω

ζ2q̄ dx

)1/q̄

for k ≥ u − 1 on the support of ζ, where C is a constant as in (22). By the
change of variables, this turns into

∫

{v>k}∩Ωr(1−δ)

|∇v|2 dx
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≤ C

(
1

δ2r2−d/q
max

{v>k}∩Ωr

(v − k)2 + 1

)
|{v > k} ∩ Ωr|

1−1/q,

where Ωr = B+
r = {y ∈ R

d : |y| < r, y1 > 0}. Similarly, the inequality (39)
is proved for v. Hence v ∈ H(Ω,M,C, 1, q) in Definition 7.1 when Ω = B+

r1 .
Therefore, by Theorem 7.5 we have

oscB+

r
v ≤ N

(
r

r1

)α

for all r ≤ r1, where α = α(d, C, q) and N = N(d, C, q, r1,M). This together
with the definition of v and (24) shows that, for any r < r0

2(1+β2) =: r2,

oscΩru ≤ oscB+

rβ
v ≤ N

(
r

r2

)α

.

Finally, we use this inequality and (23) to finish the proof (for details, see
Theorem 8.29 in [9]). �

5. Lp-estimates for linear equations

In the proof of Theorem 2.5 where we prove the global Hölder regularity
result, it is essential to use some results from Lp-theory for linear elliptic equa-
tions. In this section, we consider the linear equation

(25)

{
−Di(aijDjv) + λv = Dihi + h in Ω,

(aijDjv + hi) νi = 0 on ∂Ω,

where ν is the outward normal vector to the surface ∂Ω and λ > 0, and present
some Lp-solvability as well as Lp-estimates necessary for the proof of Theorem
2.5.

We assume that the leading coefficients aij have small mean oscillations with
respect to x ∈ R

d. To describe this assumption, we set

a#R = sup
1≤i,j≤d

sup
x0∈R

d

r≤R

–

∫

Br(x0)

–

∫

Br(x0)

|aij(x)− aij(y)| dx dy.

Assume that |aij(x)| ≤ µ−1 and aij(x)ξiξj ≥ µ|ξ|2 for all ξ ∈ R
d and x ∈ R

d.
Also we assume

Assumption 5.1 (ρ1). There is a constant R1 ∈ (0, 1] such that a#R1
≤ ρ1.

We use the following result from [4]. By a half space, we mean, for example,
R

d
+ = {x ∈ R

d : x1 > 0}.

Proposition 5.2. Let Ω be the whole space R
d, a half space, or a bounded

Lipschitz domain. Let p̂ ∈ (2,∞), p ∈ [p̂/(p̂−1), p̂], hi ∈ Lp(Ω), and h ∈ Lp(Ω).
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(1) If Ω is the whole space R
d or a half space R

d
+, there exists a positive

ρ1 = ρ1(d, µ, p̂) such that, under Assumption 5.1 (ρ1), there is a unique

v ∈W 1
p (Ω) satisfying (25) and

(26)
√
λ‖vx‖Lp(Ω) + λ‖v‖Lp(Ω) ≤ N

√
λ‖hi‖Lp(Ω) +N‖h‖Lp(Ω)

provided that λ ≥ λ0, where N > 0 and λ0 > 0 are constants depending

only on d, µ, p̂, and R1.

(2) If Ω is a bounded Lipschitz domain, there exist positive β = β(d, µ, p̂)
and ρ1 = ρ1(d, µ, p̂) such that, under Assumption 2.1 (β) and Assump-

tion 5.1 (ρ1), there is a unique v ∈ W 1
p (Ω) satisfying (25) and (26)

provided that λ ≥ λ0, where N > 0 and λ0 ≥ 0 are constants depending

only on d, µ, p̂, R0, R1, and diamΩ.

The proposition above was proved in [4] so that the choices of β and ρ1 may
be different depending on p. Also see [5]. To find uniform ρ1 and β for all
p ∈ [p̂/(p̂ − 1), p̂], we use the cited result and an interpolation argument as
in [6]. Indeed, if we have the W 1

p̂ solvability of (25) for some aij and Ω, by

the duality, the W 1
p̂/(p̂−1) solvability follows. Then we apply Marcinkiewicz’s

theorem to get the W 1
p solvability for any p ∈ [p̂/(p̂− 1), p̂].

By using Proposition 5.2, we derive the following theorem, where h may
have less integrability than those in Proposition 5.2. Again, the constants β
and ρ1 are found independent of σ and q as long as σ and q∗ are in an a prior
fixed interval. Recall the definition of q∗ given above Theorem 2.5.

Theorem 5.3. Let Ω be a bounded Lipschitz domain, σ, q ∈ (1,∞), p̂ ∈ (2,∞),
hi ∈ Lσ(Ω), and h ∈ Lq(Ω). Assume that σ, q∗ ∈ [p̂/(p̂ − 1), p̂]. Then there

exist positive β = β(d, µ, p̂) and ρ1 = ρ1(d, µ, p̂) such that, under Assumption

2.1 (β) and Assumption 5.1 (ρ1), there is a unique v ∈ W 1
p (Ω) satisfying (25)

and

‖v‖W 1
p (Ω) ≤ N‖hi‖Lσ(Ω) +N‖h‖Lq(Ω),

provided that λ ≥ λ0, where p := min{σ, q∗} and

(27)
λ0 = λ0(d, µ, p̂, R0, R1, diamΩ) ≥ 0,

N = N(d, µ, p̂, σ, q, q∗, R0, R1, λ, diamΩ) > 0.

Proof. We split the equation (25) into two linear equations with h ≡ 0 and hi ≡
0, i = 1, . . . , d, respectively. Since hi ∈ Lp(Ω) ⊂ Lσ(Ω) and p ∈ [p̂/(p̂ − 1), p̂],
by Proposition 5.2, we have constants β and ρ1, depending only on d, µ, and
p̂, such that, under Assumption 2.1 (β) and Assumption 5.1 (ρ1), there exists
a unique solution v ∈ W 1

p (Ω) to the equation (25) with h ≡ 0 satisfying

‖v‖W 1
p (Ω) ≤ N‖hi‖Lσ(Ω),

provided that λ ≥ λ0, where λ0 and N depend only on the parameters in (27).
Now let hi ≡ 0, i = 1, . . . , d. Thanks to the localization argument using a

partition of unity, it is enough to show the existence and uniqueness of a solution
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in W 1
q∗(Ω) of the equation (25) along with the following estimate when Ω = R

d

and Ω = R
d
+:

(28) ‖v‖W 1

q∗
(Ω) ≤ N‖h‖Lq(Ω).

In case Ω = R
d, since h ∈ Lq(Ω), we find a unique solution w ∈ W 2

q (R
d) to

the equation

−∆w + λw = h in Ω

satisfying

‖w‖W 2
q (Ω) ≤ N‖h‖Lq(Ω),

where λ > 0 and N = N(d, q, λ). From the above inequality and the Sobolev
imbedding theorem, we know that w ∈W 1

q∗(Ω) and

(29) ‖w‖W 1

q∗
(Ω) ≤ N‖h‖Lq(Ω).

Since q∗ ∈ [p̂/(p̂ − 1), p̂], by Proposition 5.2 we have ρ1 = ρ1(d, µ, p̂) > 0 such
that, under Assumption 5.1 (ρ1), there is a unique solution ŵ ∈ W 1

q∗(Ω) to the
equation

−Di(aijDjŵ) + λŵ = Di((aij − δij)Djw) in Ω

satisfying

(30) ‖ŵ‖W 1
q∗(Ω) ≤ N‖Dw‖Lq∗ (Ω),

provided that λ ≥ λ0, where λ0 = λ0(d, µ, p̂, R1) and N = N(d, µ, p̂, R1, λ).
Clearly v := w + ŵ ∈ W 1

q∗(Ω) is a unique solution to (25) when hi ≡ 0,
i = 1, . . . , d. By (30) and (29) the solution v satisfies (28).

In the case that Ω = R
d
+, let w be the unique W 2

q (R
d) solution to −∆w +

λw = h̄ in R
d, where h̄ is the even extension of h with respect to x1. Clearly

wx1
= 0 on ∂Rd, and as before we know that w ∈ W 1

q∗(Ω) and satisfies (29).
Now we argue as in the previous case. In particular, note that v := w + ŵ
satisfies the boundary condition in (25). �

Remark 5.4. A Dirichlet problem version of the above theorem is proved in
[13], where an F ∈ Lq∗(Ω) satisfying divF = h is found directly, thanks to
the Dirichlet boundary condition, by using a Newtonian potential. Here, since
we have the conormal derivative boundary condition, the argument in [13]
is not applicable. Instead, we have gone through the interior estimates (when
Ω = R

d), the boundary estimates (when Ω = R
d
+), and the well-known partition

of unity argument. In the above theorem as well as Proposition 5.2 for a
bounded Lipschitz domain Ω, the λ0 can be made equal to zero (If λ = 0 in
(25) we need

∫
Ω
h dx = 0). See Section 7 in [4]. However, we do not pursue

this direction here.
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6. Proof of Theorem 2.5

Under the assumptions in Theorem 2.5, Proposition 4.2 says that u is glob-
ally Hölder continuous on Ω. Then one can have an extension ū(x) on R

d of
u(x) such that ū(x) is Hölder continuous on R

d with the same Hölder exponent.
Now we define

aij(x) := Aij(x, ū(x)).

Also define

hi(x) := ai(x, u(x)), h(x) := b(x, u(x),∇u(x)).

Then the equation (1) turns into

(31)

{
−Di(aijDju) = hi(t, x)) + h(t, x) in Ω,

(aijDjv + hi)νi = 0 on ∂Ω,

where ν is the outward normal vector to the surface ∂Ω. Note that

(32) |hi(x)| ≤ µ1(|u|
γ/2 + f) ≤ µ1(M + f) ∈ Lσ(Ω),

where M is from Theorem 3.5, and

(33) |h(x)| ≤ µ2(|∇u|
2(1−1/γ) + |u|γ−1 + g).

The coefficients aij in (31) satisfy, for any x0 ∈ R
d,

–

∫

x,y∈Br(x0)

|aij(x) − aij(y)| dx dy

= –

∫

x,y∈Br(x0)

|Aij(x, ū(x)) −Aij(y, ū(y))| dx dy

≤ –

∫

x∈Br(x0)

|Aij(x, ū(x)) −Aij(x, ū(x0))| dx

+ –

∫

x,y∈Br(x0)

|Aij(x, ū(x0))−Aij(y, ū(x0))| dx dy

+ –

∫

y∈Br(x0)

|Aij(y, ū(x0))−Aij(y, ū(y))| dy

≤ 2ω(Nrα0) +A#
r ,

where the last inequality is due to Assumption 2.3 and Proposition 4.2. That
is, by using the notation in Section 5, we have

a#R ≤ 2ω(NRα0) +A#
R .

Then by Assumptions 2.3 and 2.4 there exists R2 ∈ (0, R1] such that

(34) a#R2
≤ 2ρ,

where R2 depends on the function ω.
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Proof of Theorem 2.5. We set p̂ to be max{σ, τ∗}, and fix

(35) β = β(d, p̂, µ), ρ =
1

2
ρ1(d, p̂, µ),

where β(d, p̂, µ) and ρ1(d, p̂, µ) are those in Theorem 5.3. Also fix λ ≥ λ0,
where λ0 = λ0(d, µ, p̂, R0, R1, diamΩ) is taken from Theorem 5.3.

By Theorem 2.2 there exists p0 > 2 such that u ∈ W 1
p0
(Ω). If p0 ≥

min{σ, τ∗}, we immediately obtain (5). Otherwise, we see that u satisfies (31).
By (32) and (33), hi ∈ Lσ(Ω) and h ∈ Lq1(Ω), where

q1 = min

{
γ

2(γ − 1)
p0, τ

}
.

By taking
(

γ
2(γ−1)p0

)∗
to be τ in the case that

γ

2(γ − 1)
p0 ≥ d,

we see that
2 < p0 < q∗1 ≤ τ∗.

Indeed, it is easily verified because

(36) q∗1 =

(
γ

2(γ − 1)
p0

)∗

=
γdp0

2γd− 2d− γp0
> p0 when

γ

2(γ − 1)
p0 < d.

Moreover, 2 < σ ≤ p̂. Hence we have

(37) σ, q∗1 ∈ [p̂/(p̂− 1), p̂].

Set p1 = min{σ, q∗1}. Then

p1 =





min{σ, τ∗} if
γ

2(γ − 1)
p0 ≥ d,

min{σ,

(
γ

2(γ − 1)
p0

)∗

, τ∗} if
γ

2(γ − 1)
p0 < d.

Observe that u satisfies{
−Di(aijDju) + λu = Dihi + h+ λu in Ω,

(aijDjv + hi) νi = 0 on ∂Ω,

where aij , hi, and h are those in (31). Also observe that u ∈ Lq1(Ω) because
γ

2(γ−1) < 1. Thus by Theorem 5.3 along with (34) and (35) applied to (31) we

have u ∈W 1
p1
(Ω) and

‖u‖W 1
p1

(Ω) ≤ N
(
‖hi‖Lσ(Ω) + ‖h‖Lq1(Ω) + ‖u‖Lq1(Ω)

)
,

where N = N(d, µ, p̂, σ, q1, q
∗
1 , R0, R2, λ, diamΩ). Bearing in mind the defini-

tions of hi and h as well as using Theorem 2.2, we obtain (5) unless

(38)
γ

2(γ − 1)
p0 < d and

(
γ

2(γ − 1)
p0

)∗

< min{σ, τ∗}.
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In this case, p1 = q∗1 =
(

γ
2(γ−1)p0

)∗
and, as seen in (36), p1 > p0. Now, since

u ∈W 1
p1
(Ω), by (33) it follows that

h ∈ Lq2(Ω), q2 = min

{
γ

2(γ − 1)
p1, τ

}
.

Note that q2 > q1. We define p2 = min{σ, q∗2} > p1. Then we see that
(37) is satisfied with q∗2 in place of q∗1 and u ∈ Lq2(Ω). By repeating the above
argument, we obtain (5) unless (38) holds with p1 in place of p0. We continue, if
necessary, repeating the above argument to obtain p3, p4, . . . with the recursion
formula

pk+1 =

(
γ

2(γ − 1)
pk

)∗

=
γdpk

2γd− 2d− γpk
, k = 0, 1, 2, . . . .

Since

pk+1 − pk ≥
p0(γp0 + 2d− γd)

2γd− 2d
,

there has to be an integer k0 such that p = pk0
= min{σ, τ∗}. Note that (37)

holds true with q∗k in place of q∗1 for all k = 1, . . . , k0. This allows us to use
Theorem 5.3 in the above iteration process with the same β and ρ in (35) for
all k = 1, . . . , k0. �

7. Functions in the class H

Throughout the section, the domain Ω is either Br0 or B+
r0 = {x ∈ Br0 , x1 >

0}, and Ωr = Ω∩Br, whereBr is concentric with Br0 . The results in this section
are those in [10, Chater 2, section 6], where the interior Hölder regularity is
proved. We slightly modified the statements in [10] so that they also work for
the boundary Hölder regularity. We also give precise parameters on which the
constants in the statements depend. We omit here the proofs since they can
be done in the same way as in [10].

Definition 7.1. Let r0 > 0, M > 0, C > 0, κ > 0, q > d/2 be real numbers,
and Ω = Bρ0

or Ω = B+
ρ0
. We say v ∈ H(Ω,M,C, κ, q) if v ∈ W 1

2 (Ω) satisfies
|v| ≤ M as well as the following two inequalities for any r ∈ (0, r0] and δ ∈
(0, 1):

∫

{v>k}∩Ωr(1−δ)

|∇v|2 dx

≤ C

(
1

δ2r2−d/q
max

{v>k}∩Ωr

(v − k)2 + 1

)
|{v > k} ∩ Ωr|

1−1/q
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for k ≥ maxΩr v − κ, and

(39)

∫

{v<k}∩Ωr(1−δ)

|∇v|2 dx

≤ C

(
1

δ2r2−d/q
max

{v<k}∩Ωr

(k − v)2 + 1

)
|{v < k} ∩ Ωr|

1−1/q

for k ≤ minΩr v + κ.

The following lemma is Lemma 2.3.5 in [10] with Ω = Br. As noted there,
it also works for any convex domains.

Lemma 7.2. Let Ω = Br or Ω = B+
r . Then for an arbitrary function v in

W 1
1 (Ω) and for arbitrary k and l such that k ≤ l,

(l − k)|{v > l} ∩Ω|1−1/d ≤ N
rd

|{v ≤ k} ∩ Ω|

∫

{k<v≤l}∩Ω

|∇v| dx,

where N = N(d).

Lemma 7.3. Let v ∈ H(Ω,M,C, κ, q). Then there exists a θ1 = θ1(d, C, q) > 0
such that, for any Ωr ⊂ Ω and for any number k ≥ maxΩr u(x) − κ, the

inequality

|Ωr ∩ {v > k}| ≤ θ1r
d

implies

|Ωr/2 ∩ {v > k +K/2}| = 0,

provided that

K = max
Ωr

u− k ≥ r1−
d
2q .

Lemma 7.4. Let v ∈ H(Ω,M,C, κ, q). Then there exists a positive integer

s = s(d, C, q) such that, for any Ωr ⊂ Ω4r ⊂ Ω, at least one of the following

two inequalities holds:

oscΩrv ≤ 2sr1−
d
2q , oscΩrv ≤

(
1−

1

2s−1

)
oscΩ4rv.

Theorem 7.5. Let v ∈ H(Ω,M,C, κ, q). Then for all r ≤ r0, we have

oscΩrv ≤ N

(
r

r0

)α

,

where

α = min

{
− log4

(
1−

1

2s−1

)
, 1−

d

2q

}
,

N = 4α max

{
oscΩr0

u, 2sr
1− d

2q

0

}
,

and the number s is taken from Lemma 7.4.
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8. Reverse Hölder inequality

Recall the definition of γ in (3). Also recall that, throughout the section, Ω
is a bounded domain satisfying Assumption 2.1. Let

c = (u)BR(x0) = –

∫

BR

u dx and q =
2d

d+ 2
.

Then by the Poincaré inequality, we have
∫

BR

|u− c|2 dx ≤ N(d)Rd+2−2d/q

(∫

BR

|∇u|q dx

)2/q

,

∫

BR

|u− c|γ dx ≤ N(d, γ)Rd+γ−γd/2

(∫

BR

|∇u|2 dx

)γ/2

.

These inequalities also hold true if BR is replaced by B+
R = {|x| < R : x1 > 0}.

As before, we write Ωr(x) = Ω ∩Br(x).

Lemma 8.1. Let Ω be a Lipschitz domain satisfying Assumption 2.1, u ∈
W 1

2 (Ω), and x0 ∈ ∂Ω. Then for R ≤ R0, we have

(40)

∫

Ωr(x0)

|u− c|2 dx ≤ N1R
d+2−2d/q

(∫

ΩR(x0)

|∇u|q dx

)2/q

,

∫

Ωr(x0)

|u− c|γ dx ≤ N2R
d+γ−γd/2

(∫

ΩR(x0)

|∇u|2 dx

)γ/2

,

where r = R
2(1+β2) , q = 2d/(d+ 2), N1 = N1(d, β), N2 = N2(d, γ, β), and

c = (u)Ωr(x0) = –

∫

Ωr(x0)

u dx.

Proof. Without loss of generality we assume that x0 = 0 and ϕ(0) = 0, where
ϕ is a Lipschitz function such that ΩR0

= Ω ∩BR0
= {x ∈ BR0

: x1 > ϕ(x′)}.
Let Φ(y) = (y1 + ϕ(y′), y′) and Φ−1(x) = Ψ(x) = (x1 − ϕ(x′), x′). Also let
v(y) = u(Φ(y)). Then by (24) we can say v ∈W 1

2 (BR1
), where R1 = R√

2(1+β2)
.

From the Poincaré inequality above for a half ball it follows that

∫

B+

R1

|v − (v)B+

R1

|2 dy ≤ NRd+2−2d/q

(∫

B+

R1

|∇v|q dy

)2/q

.

Here

(v)B+

R1

= –

∫

B+

R1

v(y) dy.

From this and the set inclusions in (24) we see that
∫

Ωr

|u − (v)B+

R1

|2 dx ≤

∫

Φ(BR1
)∩{x1>ϕ(x′)}

|u− (v)B+

R1

|2 dx
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=

∫

B+

R1

|v − (v)B+

R1

|2 dy

≤ NRd+2−2d/q

(∫

B+

R1

|∇v|q dy

)2/q

≤ NRd+2−2d/q

(∫

ΩR

|∇u|q dy

)2/q

,

where N = N(d, β). Now the inequality (40) follows because
∫

Ωr

|u− (u)Ωr |
2 dx ≤

∫

Ωr

|u − C|2 dx

for any constant C. The other inequality follows similarly. The lemma is
proved. �

Theorem 2.2 is proved by the following proposition combined with Proposi-
tion V.1.1 in [8]. Also see the proof of Theorem 3.6 in [6].

Proposition 8.2. Let R ≤ R0, u ∈ W 1
2 (Ω) be a weak solution to (1), f ∈

L2(Ω), and g ∈ L γ
γ−1

(Ω). Then, for any ΩR(x0), where either BR(x0) ⊂ Ω or

x0 ∈ ∂Ω, we have

–

∫

Ω̺R(x0)

(|∇u|2 + |u|γ)

≤ N

(
–

∫

ΩR(x0)

|∇u|q + |u|γq/2

) 2

q

+N –

∫

ΩR(x0)

(
|f |2 + |F |2

)

+NRdγ( 1

γ − 1

2
)+γ

(∫

ΩR(x0)

|∇u|2

) γ
2
−1(

–

∫

ΩR(x0)

|∇u|2

)
,

where ̺ = 1
4(1+β2) ∈ (0, 1), q = 2d

d+2 , F = |g|
1

2

γ
γ−1 , and N =N(d, µ, µ1, µ2, γ, β).

Note that Rdγ( 1

γ − 1

2
)+γ = 1 if d > 2 and Rdγ( 1

γ − 1

2
)+γ = R2 if d = 2.

Proof. We only show the case x0 ∈ ∂Ω. The other case follows the same lines.
Let η0 ∈ C∞

0 (Rd) be a function satisfying 0 ≤ η0 ≤ 1 and

η0 =





1 for |x| ≤
1

4(1 + β2)
,

0 for |x| ≥
1

2(1 + β2)
.

Set r = R
2(1+β2) , c = (u)Ωr(x0) = –

∫
Ωr(x0)

u dx, and η = η0(R
−1(· − x0)).

Using a test function (u− c)η2, we have
∫

ΩR(x0)

Aij(x, u)Di

[
(u− c)η2

]
Dju+

∫

ΩR(x0)

ai(x, u)Di

[
(u − c)η2

]
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=

∫

ΩR(x0)

b(x, u,∇)(u − c)η2.

That is,

(41)

∫

ΩR(x0)

Aijη(Diu)η(Dju)

= −

∫

ΩR(x0)

2Aij(u− c)η(Diη)(Dju)

−

∫

ΩR(x0)

aiDi

[
(u− c)η2

]
+

∫

ΩR(x0)

b(u− c)η2

=: J1 + J2 + J3.

We estimate J1, J2 and J3 by using Young’s inequality and the conditions on
Aij , ai, and b.

Estimate of J1:

J1 ≤ 2µ−1

∫

ΩR(x0)

|∇u||u− c|η|∇η|

≤
µ

16

∫

ΩR(x0)

η2|∇u|2 +N

∫

ΩR(x0)

|u− c|2|∇η|2.

Estimate of J2:

J2 ≤ µ1

∫

ΩR(x0)

|u|γ/2|∇u|η2 + µ1

∫

ΩR(x0)

|f ||∇u|η2

+ 2µ1

∫

ΩR(x0)

|u|γ/2|u− c||∇η|η + 2µ1

∫

ΩR(x0)

|f ||u− c||∇η|η

≤
µ

16

∫

ΩR(x0)

|∇u|2η2 +N

∫

ΩR(x0)

|u|γη2

+N

∫

ΩR(x0)

|f |2η2 +N

∫

ΩR(x0)

|u− c|2|∇η|2.

Estimate of J3:

J3 ≤ µ2

∫

ΩR(x0)

|∇u|2(1−1/γ)|u− c|η2 + µ2

∫

ΩR(x0)

|u|γ−1|u− c|η2

+ µ2

∫

ΩR(x0)

|g||u− c|η2

≤
µ

16

∫

ΩR(x0)

|∇u|2η2 +N

∫

ΩR(x0)

|u− c|γη2

+N

∫

ΩR(x0)

|u|γη2 +N

∫

ΩR(x0)

|g|
γ

γ−1 η2.
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From these estimates of Ji, i = 1, 2, 3, and the inequality (41) along with the
ellipticity condition in (2) we have

∫

ΩR(x0)

|∇u|2η2 ≤ N

∫

ΩR(x0)

|u− c|2|∇η|2 +N

∫

ΩR(x0)

|u− c|γη2

+N

∫

ΩR(x0)

|u|γη2 +N

∫

ΩR(x0)

(
|f |2 + |g|

γ
γ−1

)
η2

:= N(I1 + I2 + I3 + I4),

where N = N(µ, µ1, µ2). Now we get estimates for I1, I2, and I3 as follows.
Estimate of I1: Recall the definition of η, r = R

2(1+β2) , and q = 2d
d+2 . Then

by Lemma 8.1,

I1 ≤ NR−2

∫

Ωr(x0)

|u− c|2 ≤ NRd

(
–

∫

ΩR(x0)

|∇u|q

)2/q

.

Estimate of I2: Again by Lemma 8.1,

I2 ≤

∫

Ωr(x0)

|u− c|γ ≤ NRd+γ−γd/2

(∫

ΩR(x0)

|∇u|2

)γ/2

.

Estimate of I3: First note that

∫

Ωr(x0)

|c|γ dx ≤ NRd

(
–

∫

Ωr(x0)

|u| dx

)γ

≤ NRd

(
–

∫

ΩR(x0)

|u|γq/2 dx

)2/q

,

where, in the last inequality, we have used the fact that |Ωr(x0)| ≥ |B+
r1 |,

r1 = R
(
2(1 + β2)

)−3/2
. Hence

(42) I3 ≤ N

∫

Ωr(x0)

|u − c|γ +N

∫

Ωr(x0)

|c|γ

≤ NRd+γ−γd/2

(∫

ΩR(x0)

|∇u|2

)γ/2

+Rd

(
–

∫

ΩR(x0)

|u|γq/2 dx

)2/q

.

Therefore,

∫

ΩR(x0)

|∇u|2η2 ≤ NRd

(
–

∫

ΩR(x0)

|∇u|q

) 2

q

+NRd

(
–

∫

ΩR(x0)

|u|γq/2

) 2

q

+N

∫

ΩR(x0)

(
|f |2 + |F |2

)

+NRdγ( 1

γ − 1

2
)+γ

(∫

ΩR(x0)

|∇u|2

) γ
2
−1(∫

ΩR(x0)

|∇u|2

)
,
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where N = N(d, µ, µ1, µ2, γ, β) and

F = |g|
1

2

γ
γ−1 .

Finally, we obtain the desired inequality in the proposition by adding the I3
term to the above inequality, using (42), and diving all terms by Rd. �
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