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MEAN-FIELD BACKWARD STOCHASTIC DIFFERENTIAL

EQUATIONS ON MARKOV CHAINS

Wen Lu and Yong Ren

Abstract. In this paper, we deal with a class of mean-field backward sto-
chastic differential equations (BSDEs) related to finite state, continuous
time Markov chains. We obtain the existence and uniqueness theorem
and a comparison theorem for solutions of one-dimensional mean-field
BSDEs under Lipschitz condition.

1. Introduction

The general (nonlinear) backward stochastic differential equations (BSDE
in short) were firstly introduced by Pardoux and Peng [22] in 1990. Since
then, BSDEs have been studied with great interest, and they have gradually
become an important mathematical tool in many fields such as financial math-
ematics, stochastic games and optimal control, etc, see for example, Peng [23],
Hamadène and Lepeltier [13] and El Karoui et al. [11].

McKean-Vlasov stochastic differential equation of the form

dX(t) = b(X(t), µ(t))dt+ dW (t), t ∈ [0, T ], X(0) = x,(1)

where

b(X(t), µ(t)) =

∫

Ω

b(X(t, ω), X(t;ω′))P (dω′) = E[b(ξ,X(t)]|ξ=X(t),

b : Rm × R
m → R being a (locally) bounded Borel measurable function and

µ(t; ·) being the probability distribution of the unknown process X(t), was
suggested by Kac [14] as a stochastic toy model for the Vlasov kinetic equation
of plasma. The study of which was initiated by Mckean [21]. Since then, many
authors made contributions on McKean-Vlasov type SDEs and applications,
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see for example, Ahmed [1], Ahmed and Ding [2], Borkar and Kumar [3], Chan
[6], Crisan and Xiong [10], Kotelenez [15], Kotelenez and Kurtz [16], and so on.

Mathematical mean-field approaches have been used in many fields, not
only in physics and chemistry, but also recently in economics, finance and
game theory, see for example, Lasry and Lions [17], they have studied mean-
field limits for problems in economics and finance, and also for the theory of
stochastic differential games.

Inspired by Lasry and Lions [17], Buckdahn et al. [4] introduced a new kind
of BSDEs of mean-field BSDEs. Furthermore, Buckdahn et al. [5] deepened
the investigation of mean-field BSDEs in a rather general setting, they gave
the existence and uniqueness of solutions for mean-field BSDEs with Lipschitz
condition on coefficients, they also established the comparison principle for
these mean-field BSDEs. On the other hand, since the works [4] and [5] on
the mean-field BSDEs, there are some efforts devote to its generalization, Xu
[24] obtained the existence and uniqueness of solutions for mean-field back-
ward doubly stochastic differential equations; Li and Luo [19] studied reflected
BSDEs of mean-field type, they proved the existence and the uniqueness for
reflected mean-field BSDEs; Li [18] studied reflected mean-filed BSDEs in a
purely probabilistic method, and gave a probabilistic interpretation of the non-
linear and nonlocal PDEs with the obstacles.

However, most previous contributions to BSDEs and mean-field BSDEs have
been obtained in the framework of continuous time diffusion. Recently, Cohen
and Elliott [7] introduced a new kind of BSDEs of the form, for t ∈ [0, T ]

Yt = ξ +

∫ T

t

f(s, Ys−, Zs)ds−

∫ T

t

ZsdMs,(2)

where Mt is a martingale related to a finite state continuous time Markov chain
(the details of Mt will be given in Section 2). In Cohen and Elliott [7], the
authors proved the existence and uniqueness of solutions for those equations
under Lipschitz condition. Furthermore, Cohen and Elliott [8] gave a scalar
and vector comparisons for solutions of the BSDEs on Markov chains. Fur-
thermore, they discussed arbitrage and risk measure in scalar case. In Lu and
Ren [20], we established the existence and uniqueness of the solutions of an-
ticipated backward stochastic differential equations on finite state, continuous
time Markov chains and a scalar comparison theorem. Very recently, Cohen
and Elliott [9] established the existence and uniqueness as well as comparison
theorem for BSDEs in general spaces.

Motivated by the above works, the present paper deal with a class of mean-
field BSDEs on Markov Chains of the form

Yt = ξ +

∫ T

t

E′[f(s, Y ′
s−, Z

′
s, Ys−, Zs)]ds−

∫ T

t

ZsdMs,(3)

where (Y ′, Z ′) is a copy of (Y, Z). To the best of our knowledge, so far little
is known about this new kind of BSDEs. Our aim is to find a pair of adapted
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processes (Y, Z) in an appropriate space such that (3) hold. We also present
a comparison theorem for the solutions of BSDEs (3). We remark that our
BSDE (3) includes BSDE (2) as a special case.

The paper is organized as follows. In Section 2, we introduce some prelim-
inaries. Section 3 is devoted to the proof of the existence and uniqueness of
the solutions to mean-field BSDEs on Markov chains. In Section 4, we give a
comparison theorem for the solutions of mean-field BSDEs.

2. Preliminaries

Let T > 0 be fixed throughout this paper. Let X = {Xt, t ∈ [0, T ]} be
a continuous time finite state Markov chain. The state space of X can be
identified with the set of unite column vectors {e1, e2, . . . , eN} in R

N , where
ei = (0, . . . , 1, . . . , 0)∗ with 1 in the i-th position, N is the number of states
and [·]∗ denotes vector/matrix transposition.

Let (Ω,F , P ) be a complete probability space. We denote by F = {Ft, 0 ≤
t ≤ T } the natural filtration generated by X = {Xt, t ∈ [0, T ]} and augmented
by all P -null sets, i.e.,

Ft = σ{Xu, 0 ≤ u ≤ t} ∨ NP ,

where NP is the set of all P -null subsets.
Let At be the rate matrix for the chain X at time t, then this chain has the

representation (see Appendix B of Elliott et al. [12])

Xt = X0 +

∫ t

0

AuXu−du+Mt,

where Mt is a martingale related to the chain X = {Xt, t ∈ [0, T ]}. The
optional quadratic variation of Mt is given by the matrix process

[M,M ]t =
∑

0<u≤t

∆Mu∆M∗
u

and

〈M,M〉t =

∫

]0, t]

[diag(AuXu−)− diag(Xu−)A
∗
u −Audiag(Xu−)]du.

Let Φt be the nonnegative definite matrix

Φt := diag(AtXt−)− diag(Xt−)A
∗
t −Atdiag(Xt−)

and
‖Z‖Xt−

:=
√

Tr(ZΦtZ∗).

Then ‖ · ‖Xt−
defines a (stochastic) seminorm, with the property that

Tr(Ztd〈M,M〉tZ
∗
t ) = ‖Z‖2Xt−

dt.

Now, we provide some spaces and notations used in the sequel.

• Lp(Ω,FT , P ) := {ξ : real valued FT -measurable random variable E|ξ|p

< +∞, p ≥ 1};
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• L0(Ω,F , P ;Rn) := {ξ : Rn-valued F -measurable random variable};
• S2

F(R) := {Y : Ω× [0, T ] → R càdlàg and F-adapted, E
[

supt∈[0,T ] |Yt|
2
]

< +∞};
• H2

X,F(R
N ) := {Z : Ω × [0, T ] → R

N , left continuous and predictable,

E
∫ T

0
‖Zt‖

2
Xt−

dt < +∞}.

Let (Ω̄, F̄ , P̄ ) = (Ω × Ω,F ⊗ F , P ⊗ P ) be the (non-completed) product
of (Ω,F , P ) with itself. We denote the filtration of this product space by
F̄ = {F̄t = F ⊗ Ft, 0 ≤ t ≤ T }. A random variable ξ ∈ L0(Ω,F , P ;Rn)
originally defined on Ω is extended canonically to Ω : ξ′(ω′, ω) = ξ(ω′), (ω′, ω) ∈
Ω̄ = Ω × Ω. For any θ ∈ L1(Ω̄, F̄ , P̄ ) the variable θ(·, ω) : Ω → R belongs to
L1(Ω,F , P ), P (dω)-a.s.; we denote its expectation by

E′[θ(·, ω)] =

∫

Ω

θ(ω′, ω)P (dω′).

Notice that E′[θ] = E′[θ(·, ω)] ∈ L1(Ω,F , P ), and

Ē[θ]
(

=

∫

Ω

θdP̄ =

∫

Ω

E′[θ(·, ω)]P (dω)
)

= E[E′[θ]].

For convenience, we rewrite mean-field BSDEs (3) as below:

Yt = ξ +

∫ T

t

E′[f(s, Y ′
s−, Z

′
s, Ys−, Zs)]ds−

∫ T

t

ZsdMs.(4)

The coefficient of our mean-field BSDE is a function f = f(ω′, ω, t, y′, z′, y, z) :
Ω̄× [0, T ]×R×R

N ×R×R
N → R which is F̄-progressively measurable for all

(y′, z′, y, z). We make the following assumptions:
(A1) There exists a constant C ≥ 0 such that, dt × P̄ -a.s., y1, y2, y

′
1, y

′
2 ∈

R,z1, z2, z
′
1, z

′
2 ∈ R

N ,

|f(ω′, ω, t, y′1, z
′
1, y1, z1)− f(ω′, ω, t, y′2, z

′
2, y2, z2)|

≤ C
(

|y′1 − y′2|+ ‖z′1 − z′2‖Xt−
+ |y1 − y2|+ ‖z1 − z2‖Xt−

)

;

(A2) Ē
∫ T

0 |f(t, 0, 0, 0, 0)|2dt < +∞.

Remark 2.1. Since the integral in (4) is with respect to Lebesgue measure and
our processes have at most countably many jumps, in this case the equation is
unchanged whether the left limits are included or not.

Remark 2.2. We emphasize that, due to our notations, the driving coefficient
f of (4) has to be interpreted as follows

E′[f(s, Y ′
s , Z

′
s, Ys, Zs)](ω) = E′[f(s, Y ′

s , Z
′
s, Ys(ω), Zs(ω))]

=

∫

Ω

f(s, Y ′
s (ω

′), Z ′
s(ω

′), Ys(ω), Zs(ω))P (dω′).

Definition 1. A solution to the mean-filed BSDE (4) is a couple (Y, Z) =
(Yt, Zt)0≤t≤T satisfying (4) such that (Y, Z) ∈ S2

F(R)×H2
X,F(R

N ).
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3. Existence and uniqueness of solutions

In this section, we aim to derive the existence and uniqueness result for the
solutions of mean-field BSDEs on Markov chains.

Before stating our main theorem, we recall an existence and uniqueness
result in Cohen and Elliott [7].

Lemma 3.1. Given ξ ∈ L2(Ω,FT , P ). Suppose assumptions (A1) and (A2)
hold. Then BSDE (2) has a unique solution (Y, Z) ∈ S2

F(R)×H2
X,F(R

N ), and
the solution is the unique such solution, up to indistinguishability for Y and

equality d〈M,M〉t × P -a.s. for Z.

For the solutions of mean-field BSDE (4), we first establish the following
unique result.

Lemma 3.2. Given ξ ∈ L2(Ω,FT , P ). Suppose assumptions (A1) and (A2)
hold. Then mean-field BSDE (4) has at most one solution (Y, Z) ∈ S2

F(R) ×
H2

X,F(R
N ).

Proof. Let (Y i, Zi) ∈ S2
F(R)×H2

X,F(R
N ), i = 1, 2 be two solutions of mean-field

BSDE (4). Define Ŷ = Y 1 − Y 2, Ẑ = Z1 − Z2, we then have

Ŷ (t) =

∫ T

t

E′[f̂(s)]ds−

∫ T

t

ẐsdMs,

where f̂(s) = f(s, Y 1′
s−, Z

1′
s , Y 1

s−, Z
1
s )− f(s, Y 2 ′

s−, Z
2 ′
s , Y 2

s−, Z
2
s ).

Using the Stieltjes chain rule for products, we get

|Ŷt|
2 = |Ŷ0|

2 − 2

∫ t

0

Ŷs−E
′[f̂(s)]ds+ 2

∫ t

0

Ŷs−ẐsdMs(5)

+
∑

0<s≤t

|∆Y 1
s −∆Y 2

s |
2.

Taking expectation on both sides of (5) and evaluating at t = T , we obtain

E|Ŷt|
2 = 2

∫ T

t

E[Ŷs−E
′[f̂(s)]]ds− E

∑

t<s≤T

|∆Y 1
s −∆Y 2

s |
2(6)

= 2

∫ T

t

E[Ŷs−E
′[f̂(s)]]ds− E

∑

t<s≤T

|(Z1
s − Z2

s )∆Ms|
2

= 2

∫ T

t

E[Ŷs−E
′[f̂(s)]]ds−

∫ T

t

E‖Ẑs‖
2
Xs−

ds.

On the other hand, by (A1) and Young’s inequality 2ab ≤ 1
ρ
a2 + ρb2, for any

ρ > 0, it holds that

2

∫ T

t

E[Ŷs−E
′[f̂(s)]]ds
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≤ 2C

∫ T

t

E
[

Ŷs−E
′(|Ŷ ′

s−|+ ‖Ẑ ′
s‖Xs−

+ |Ŷs−|+ ‖Ẑs‖Xs−
)
]

ds

≤ 4C

∫ T

t

E|Ŷs−|
2ds+ 2C

∫ T

t

[

ρE|Ŷs−|
2 +

1

ρ
E‖Ẑs‖

2
Xs−

]

ds.

Choosing ρ = 3C, we obtain

2

∫ T

t

E
{

Ŷs−E
′[f̂(s)]

}

ds ≤ (6C2 + 4C)

∫ T

t

E|Ŷs−|
2ds+

2

3

∫ T

t

E‖Ẑs‖
2
Xs−

ds.

This together with (6) implies

E|Ŷt|
2 +

1

3

∫ T

t

E‖Ẑs‖
2
Xs−

ds ≤ (6C2 + 4C)

∫ T

t

E|Ŷs−|
2ds.

An application of Grönwall’s inequality gives

E|Ŷt|
2 = 0, E‖Ẑt‖

2
Xt−

= 0,

i.e., Y 1
t = Y 2

t and Z1
t = Z2

t P -a.s. for each t. The proof is complete. �

Next, let’s consider a simplified version of mean-field BSDEs (4) as follows

Yt = ξ +

∫ T

t

E′[f(s, Y ′
s−, Ys−, Zs)]ds−

∫ T

t

ZsdMs.(7)

We have the following existence and uniqueness result.

Lemma 3.3. Given ξ ∈ L2(Ω,FT , P ). Suppose assumptions (A1) and (A2)
hold. Then mean-field BSDE (7) has a unique solution (Y, Z) ∈ S2

F(R) ×
H2

X,F(R
N ).

Proof. Let Y 0
t = 0, t ∈ [0, T ], we consider the following mean-field BSDE:

Y n+1
t = ξ +

∫ T

t

E′[f(s, Y n ′
s− , Y n

s−, Z
n+1
s )]ds−

∫ T

t

Zn+1
s dMs.(8)

According to Lemma 3.1, we can define recursively (Y n+1, Zn+1) be the solu-
tion of BSDE (8). For t ∈ [0, T ], we have

Y n+1
t − Y n

t(9)

=

∫ T

t

E′[f(s, Y n ′
s− , Y n

s−, Z
n+1
s )− f(s, Y n−1 ′

s− , Y n−1
s− , Zn

s )]ds

−

∫ T

t

(Zn+1
s − Zn

s )dMs

= Y n+1
0 − Y n

0 −

∫ t

0

E′[f(s, Y n ′
s− , Y n

s−, Z
n+1
s )− f(s, Y n−1 ′

s− , Y n−1
s− , Zn

s )]ds.

−

∫ t

0

(Zn+1
s − Zn

s )dMs.
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Using the Stieltjes chain rule for products, we have

|Y n+1
t − Y n

t |2

= |Y n+1
0 − Y n

0 |2 − 2

∫ t

0

(Y n+1
s− − Y n

s−)E
′[f(s, Y n ′

s− , Y n
s−, Z

n+1
s )

− f(s, Y n−1 ′
s− , Y n−1

s− , Zn
s )]ds+ 2

∫ t

0

(Y n+1
s− − Y n

s−)(Z
n+1
s − Zn

s )dMs

+
∑

0<s≤t

|∆Y n+1
s −∆Y n

s |2.

Taking expectation and evaluating at t = T , we obtain

E|Y n+1
t − Y n

t |2(10)

= 2

∫ T

t

E
{

(Y n+1
s− − Y n

s−)E
′[f(s, Y n ′

s− , Y n
s−, Z

n+1
s )

− f(s, Y n−1 ′
s− , Y n−1

s− , Zn
s )]

}

ds−

∫ T

t

E‖Zn+1
s − Zn

s ‖
2
Xs−

ds,

by (A1) and Young’s inequality, for any ρ > 0, we have

2

∫ T

t

E
{

(Y n+1
s− − Y n

s−)E
′[f(s, Y n ′

s− , Y n
s−, Z

n+1
s )(11)

− f(s, Y n−1 ′
s− , Y n−1

s− , Zn
s )]

}

ds

≤ 2C

∫ T

t

E
{

(Y n+1
s− − Y n

s−)E
′[|Y n ′

s− − Y n−1 ′
s− |

+ |Y n
s− − Y n−1

s− |+ ‖Zn+1
s − Zn

s ‖Xs−
]
}

ds

≤
3C

ρ

∫ T

t

E|Y n+1
s− − Y n

s−|
2ds+ 2ρC

∫ T

t

E|Y n
s− − Y n−1

s− |2ds

+ ρC

∫ T

t

E‖Zn+1
s − Zn

s ‖
2
Xs−

ds.

Choosing ρ = 1
2C , combining (10) and (11), we then have

E|Y n+1
t − Y n

t |2(12)

≤ c[

∫ T

t

E|Y n+1
s − Y n

s |2ds+

∫ T

t

E|Y n
s − Y n−1

s |2ds],

where c = max{6C2, 1}. Let un(t) =
∫ T

t
E|Y n

s −Y n−1
s |2ds, it follows from (12)

−
dun+1

dt
(t)− cun+1(t) ≤ cun(t), un+1(T ) = 0.

Integration gives

un+1(t) ≤ c

∫ T

t

ec(s−t)un(s)ds.
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Iterating above inequality, we obtain

un+1(0) ≤
(cec)n

n!
u1(0).

This implies that {Y n} is a Cauchy sequence in S2
F(R). Then by (12), {Zn} is

a Cauchy sequence in H2
X,F(R

N ).

Passing to the limit on both sides of (8), by (A2) and the dominated con-
vergence theorem, it follows that

Y := lim
n→∞

Y n, Z := lim
n→∞

Zn

solves BSDE (7). The uniqueness is a direct consequence of Lemma 3.2. The
proof is complete. �

The main result of this section is the following theorem.

Theorem 3.4. Assume that (A1) and (A2) hold true. Then for any given

terminal conditions ξ ∈ L2(Ω,FT , P ), the mean-field BSDE (4) has a unique

solution (Y, Z) ∈ S2
F(R)×H2

X,F(R
N ).

Proof. According to Lemma 3.2, all we need to prove is the existence of solution
for mean-field BSDE (4).

let Z0
t = 0, t ∈ [0, T ], in virtue of Lemma 3.3, we can define recursively the

pair of processes (Y n+1, Zn+1) be the unique solution of the following mean-
field BSDE:

(13) Y n+1
t = ξ +

∫ T

t

E′[f(s, Y n+1 ′
s− , Zn ′

s , Y n+1
s− , Zn+1

s )]ds−

∫ T

t

Zn+1
s dMs.

Using the same procedure as above, we get

E|Y n+1
t − Y n

t |2

= 2

∫ T

t

E
{

(Y n+1
s− − Y n

s−)E
′[f(s, Y n+1 ′

s− , Zn ′
s , Y n+1

s− , Zn+1
s )

− f(s, Y n ′
s− , Zn−1 ′

s , Y n
s−, Z

n
s )]

}

ds−

∫ T

t

E‖Zn+1
s − Zn

s ‖
2
Xs−

ds

≤ 2C

∫ T

t

E
{

(Y n+1
s− − Y n

s−)E
′[|Y n+1 ′

s− − Y n ′
s− |+ |Y n+1

s− − Y n
s−|

+ ‖Zn ′
s− − Zn−1 ′

s− ‖Xs−
+ ‖Zn+1

s− − Zn
s−‖Xs−

]
}

ds

−

∫ T

t

E‖Zn+1
s − Zn

s ‖
2
Xs−

ds.

With the help of (A1) and Young’s inequality, for any ρ > 0, we have

E|Y n+1
t − Y n

t |2

≤ 2C

∫ T

t

E
{

(Y n+1
s− − Y n

s−)E
′[|Y n+1 ′

s− − Y n ′
s− |+ |Y n+1

s− − Y n
s−|
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+ ‖Zn ′
s− − Zn−1 ′

s− ‖Xs−
+ ‖Zn+1

s− − Zn
s−‖Xs−

]
}

ds

−

∫ T

t

E‖Zn+1
s − Zn

s ‖
2
Xs−

ds

≤ (4C +
2C

ρ
)

∫ T

t

E
[

|Y n+1
s− − Y n

s−|
2ds+ ρC

∫ T

t

E‖Zn
s− − Zn−1

s− ‖2Xs−
ds

+ (ρC − 1)

∫ T

t

E‖Zn+1
s − Zn

s ‖
2
Xs−

ds.

Define k = 4C + 2C
ρ
, by the backward Grönwall’s inequality, we obtain

(14)

E|Y n+1
t − Y n

t |2

≤ ρC

∫ T

t

E‖Zn
s − Zn−1

s ‖2Xs−
ds+ (ρC − 1)

∫ T

t

E‖Zn+1
s − Zn

s ‖
2
Xs−

ds

+ ke−kt

∫ T

t

e−ks
[

∫ T

s

ρCE‖Zn
u − Zn−1

u ‖2Xu−

du

+ (ρC − 1)

∫ T

s

E‖Zn+1
u − Zn

u‖
2
Xu−

du
]

ds.

Choosing ρ = 1
3C , we get

∫ T

t

E‖Zn+1
s − Zn

s ‖
2
Xs−

ds+ ke−kt

∫ T

t

eks
∫ T

s

E‖Zn+1
u − Zn

u‖
2
Xu−

duds

≤
1

2

(

∫ T

t

E‖Zn
s − Zn−1

s ‖2Xs−
ds+ ke−kt

∫ T

t

eks
∫ T

s

E‖Zn
u − Zn−1

u ‖2Xu−

duds
)

.

Iterating above inequality implies that {Zn} is a Cauchy sequence in H2
X,F(R

N )
under the equivalent norm.

By (14), we know that {Y n} is a Cauchy sequence in H2
F(R). We denote

their limits by Y and Z respectively. By (A2) and the dominated convergence
theorem, for any t ∈ [0, T ], we have
∫ T

t

E
∣

∣E′[f(s, Y n+1 ′
s− , Zn ′

s , Y n+1
s− , Zn+1

s )−f(s, Y ′
s−, Z

′
s , Ys−, Zs)]

∣

∣ds → 0, n → ∞.

We now pass to the limit on both sides of (13), it follows that (Y, Z) is the
unique solution of mean-filed BSDE (4). �

4. A comparison theorem

In this section, we discuss a comparison theorem for the solutions of one-
dimensional mean-field BSDEs on Markov chains.

Let (Y 1, Z1) and (Y 2, Z2) be respectively the solutions for the following two
mean-field BSDEs

(15) Y i
t = ξi +

∫ T

t

E′[fi(s, Y
i′
s , Y i

s , Z
i′
s , Z

i
s)]ds−

∫ T

t

Zi
sdMs,
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where i = 1, 2.

Theorem 4.1. Assume that f1, f2 satisfy (A1) and (A2), ξ1, ξ2∈L2(Ω,FT , P ).
Moreover, we suppose:

(i) ξ1 ≥ ξ2, P -a.s.;
(ii) for any t ∈ [0, T ],

f1(ω
′, ω, t, Y 2′

t , Z2′
t , Y 2

t , Z
2
t ) ≥ f2(ω

′, ω, t, Y 2′
t , Z2′

t , Y 2
t , Z

2
t ), P̄ -a.s.

It is then true that Y 1 ≥ Y 2 on [0, T ], P -a.s.

Proof. We omit the ω′, ω and s for clarity. By assumption (i), (ξ2 − ξ1)+ = 0,
a.s.. Since for t ∈ [0, T ], (Y 2

t − Y 1
t )

+ = 1
2 [|Y

2
t − Y 1

t |+ (Y 2
t − Y 1

t )], then by the
Stieltjes chain rule for products, we have

((Y 2
t − Y 1

t )
+)2

= − 2

∫ T

t

(Y 2
s − Y 1

s )
+d(Y 2

s − Y 1
s )

+ −
∑

t<s≤T

∆(Y 2
s − Y 1

s )
+∆(Y 2

s − Y 1
s )

+

= −

∫ T

t

(Y 2
s − Y 1

s )
+d[|Y 2

s − Y 1
s |+ (Y 2

s − Y 1
s )]

−
∑

t<s≤T

∆(Y 2
s − Y 1

s )
+∆(Y 2

s − Y 1
s )

+

= −

∫ T

t

(Y 2
s − Y 1

s )
+d|Y 2

s − Y 1
s | −

∫ T

t

(Y 2
s − Y 1

s )
+d(Y 2

s − Y 1
s )

−
∑

t<s≤T

∆(Y 2
s − Y 1

s )
+∆(Y 2

s − Y 1
s )

+

= − 2

∫ T

t

I{Y 2
s
>Y 1

s
}(Y

2
s − Y 1

s )d(Y
2
s − Y 1

s )

−
∑

t<s≤T

I{Y 2
s
>Y 1

s
}∆(Y 2

s − Y 1
s )∆(Y 2

s − Y 1
s )

= − 2

∫ T

t

I{Y 2
s
>Y 1

s
}(Y

2
s − Y 1

s )d(Y
2
s − Y 1

s )

−
∑

t<s≤T

I{Y 2
s
>Y 1

s
}|(Z

2
s − Z1

s )∆Ms|
2.

For t ∈ [0, T ], by assumption (ii), (A1) and Young’s inequality, for any ρ > 0,
we have

E((Y 2
t − Y 1

t )
+)2 + E

∫ T

t

I{Y 2
s
>Y 1

s
}‖(Z

2
s − Z1

s )‖
2
Xs−

ds

= 2

∫ T

t

EI{Y 2
s
>Y 1

s
}(Y

2
s − Y 1

s )E
′[f2(Y

2′
s , Z2′

s , Y 2
s , Z

2
s )− f1(Y

1′
s , Z1′

s , Y 1
s , Z

1
s )]ds
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≤ 2

∫ T

t

E
{

I{Y 2
s
>Y 1

s
}(Y

2
s − Y 1

s )E
′[f1(Y

2′
s , Z2′

s , Y 2
s , Z

2
s )−f1(Y

1′
s , Z1′

s , Y 1
s , Z

1
s )]

}

ds

≤ 2C

∫ T

t

E
{

I{Y 2
s
>Y 1

s
}(Y

2
s − Y 1

s )[|Y
2
s − Y 1

s |+ ‖(Z2
s − Z1

s )‖Xs−

+ E′|Y 2′
s − Y 1′

s |+ E′‖(Z2′
s − Z1′

s )‖Xs−
]
}

ds

≤ 2C

∫ T

t

E[(Y 2
s − Y 1

s )
+]2ds

+ 2C

∫ T

t

E
{

I{Y 2
s
>Y 1

s
}(Y

2
s − Y 1

s )E[I{Y 2
s
>Y 1

s
}|Y

2
s − Y 1

s |]
}

ds

+
2C

ρ

∫ T

t

E[(Y 2
s − Y 1

s )
+]2ds+ 2ρCE

∫ T

t

I{Y 2
s
>Y 1

s
}‖(Z

2
s − Z1

s )‖
2
Xs−

ds

≤ (4C +
2C

ρ
)

∫ T

t

E[(Y 2
s − Y 1

s )
+]2ds

+ 2ρCE

∫ T

t

I{Y 2
s
>Y 1

s
}‖(Z

2
s − Z1

s )‖
2
Xs−

ds.

Choosing ρ = 1
2C , it follows from Gronwall’s inequality that E((Y 2

t −Y 1
t )

+)2 =

0, t ∈ [0, T ]. It is then rue that Y 1 ≥ Y 2 on [0, T ], P -a.s. The proof is
complete. �

Remark 4.2. Compared to the comparison results in Cohen and Elliott [8], our
assumptions on coefficients f1 and f2 are natural. Moreover, we don’t make
restrictions on the two solutions, hence it’s easier to use.
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