• Title/Summary/Keyword: Linear rank statistics

Search Result 53, Processing Time 0.025 seconds

Hypothesis Testing for New Scores in a Linear Model

  • Park, Young-Hun
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.1007-1015
    • /
    • 2003
  • In this paper we introduced a new score generating function for the rank dispersion function in a general linear model. Based on the new score function, we derived the null asymptotic theory of the rank-based hypothesis testing in a linear model. In essence we showed that several rank test statistics, which are primarily focused on our new score generating function and new dispersion function, are mainly distribution free and asymptotically converges to a chi-square distribution.

Comparison of Edge Detection using Linear Rank Tests in Images (영상에서 선형순위검정법을 이용한 에지검출 비교)

  • Lim Dong-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.17-26
    • /
    • 2005
  • In this paper we propose three nonparametric tests such as Wilcoxon test, Median test and Van der Waerden test, based on linear rank statistics for detecting edges in images. The methods used herein are based on detecting changes in gray-levels obtained using an edge-height parameter between two sub-regions in a 5$\times$5 window We compare and analysis the performance of three statistical edge detectors in terms of qualitative measures with the edge maps and objective, quantitative measures.

  • PDF

Rank Tests for Multivariate Linear Models in the Presence of Missing Data

  • Lee, Jae-Won;David M. Reboussin
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.3
    • /
    • pp.319-332
    • /
    • 1997
  • The application of multivariate linear rank statistics to data with item nonresponse is considered. Only a modest extension of the complete data techniques is required when the missing data may be thought of as a random sample, and an appropriate modification of the covariances is derived. A proof of the asymptotic multivariate normality is given. A review of some related results in the literature is presented and applications including longitudinal and repeated measures designs are discussed.

  • PDF

Tests for Asymmetry Associated with the Linear Signed Rank Statistics

  • Kim, Soon-Ock
    • Journal of Korean Society for Quality Management
    • /
    • v.21 no.1
    • /
    • pp.136-143
    • /
    • 1993
  • Tests associated with the linear signed rank statistics are considered for testing the symmetry of a continuous distribution about an unknown median. The results of Monte Carlo study show that the proposed tests are reasonably good in level control and powers.

  • PDF

Order-Restricted Inference with Linear Rank Statistics in Microarray Data

  • Kang, Moon-Su
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.1
    • /
    • pp.137-143
    • /
    • 2011
  • The classification of subjects with unknown distribution in a small sample size often involves order-restricted constraints in multivariate parameter setups. Those problems make the optimality of a conventional likelihood ratio based statistical inferences not feasible. Fortunately, Roy (1953) introduced union-intersection principle(UIP) which provides an alternative avenue. Multivariate linear rank statistics along with that principle, yield a considerably appropriate robust testing procedure. Furthermore, conditionally distribution-free test based upon exact permutation theory is used to generate p-values, even in a small sample. Applications of this method are illustrated in a real microarray data example (Lobenhofer et al., 2002).

LINEAR PRESERVERS OF SYMMETRIC ARCTIC RANK OVER THE BINARY BOOLEAN SEMIRING

  • Beasley, LeRoy B.;Song, Seok-Zun
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1317-1329
    • /
    • 2017
  • A Boolean rank one matrix can be factored as $\text{uv}^t$ for vectors u and v of appropriate orders. The perimeter of this Boolean rank one matrix is the number of nonzero entries in u plus the number of nonzero entries in v. A Boolean matrix of Boolean rank k is the sum of k Boolean rank one matrices, a rank one decomposition. The perimeter of a Boolean matrix A of Boolean rank k is the minimum over all Boolean rank one decompositions of A of the sums of perimeters of the Boolean rank one matrices. The arctic rank of a Boolean matrix is one half the perimeter. In this article we characterize the linear operators that preserve the symmetric arctic rank of symmetric Boolean matrices.

LINEAR PRESERVERS OF BOOLEAN RANK BETWEEN DIFFERENT MATRIX SPACES

  • Beasley, LeRoy B.;Kang, Kyung-Tae;Song, Seok-Zun
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.625-636
    • /
    • 2015
  • The Boolean rank of a nonzero $m{\times}n$ Boolean matrix A is the least integer k such that there are an $m{\times}k$ Boolean matrix B and a $k{\times}n$ Boolean matrix C with A = BC. We investigate the structure of linear transformations T : $\mathbb{M}_{m,n}{\rightarrow}\mathbb{M}_{p,q}$ which preserve Boolean rank. We also show that if a linear transformation preserves the set of Boolean rank 1 matrices and the set of Boolean rank k matrices for any k, $2{\leq}k{\leq}$ min{m, n} (or if T strongly preserves the set of Boolean rank 1 matrices), then T preserves all Boolean ranks.

EXTREME PRESERVERS OF TERM RANK INEQUALITIES OVER NONBINARY BOOLEAN SEMIRING

  • Beasley, LeRoy B.;Heo, Seong-Hee;Song, Seok-Zun
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.113-123
    • /
    • 2014
  • The term rank of a matrix A over a semiring $\mathcal{S}$ is the least number of lines (rows or columns) needed to include all the nonzero entries in A. In this paper, we characterize linear operators that preserve the sets of matrix ordered pairs which satisfy extremal properties with respect to term rank inequalities of matrices over nonbinary Boolean semirings.

Signed Linear Rank Statistics for Autoregressive Processes

  • Kim, Hae-Kyung;Kim, Il-Kyu
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.198-212
    • /
    • 1995
  • This study provides a nonparametric procedure for the statistical inference of the parameters in stationary autoregressive processes. A confidence region and a hypothesis testing procedure based on a class of signed linear rank statistics are proposed and the asymptotic distributions of the test statistic both underthe null hypothesis and under a sequence of local alternatives are investigated. Some desirable asymptotic properties including the asymptotic relative efficiency are discussed for various score functions.

  • PDF