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Abstract

The classification of subjects with unknown distribution in a small sample size often involves order-restricted

constraints in multivariate parameter setups. Those problems make the optimality of a conventional likeli-

hood ratio based statistical inferences not feasible. Fortunately, Roy (1953) introduced union-intersection

principle(UIP) which provides an alternative avenue. Multivariate linear rank statistics along with that prin-

ciple, yield a considerably appropriate robust testing procedure. Furthermore, conditionally distribution-free

test based upon exact permutation theory is used to generate p-values, even in a small sample. Applications

of this method are illustrated in a real microarray data example (Lobenhofer et al., 2002).
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1. Introduction

In a small sample like DNA microarray data with unknown distribution, order-restricted inference

problems often appear in complex ways. To study gene expression patterns across various treatment

groups with order constraints weakens the effectiveness of standard statistical inference and as a

result, calls for different perspectives (Ghosh, 2003). Nonstandard methods are proposed to classify

genes reflecting the concept of order-restricted inference without any assumptions of specific forms

(Sen, 2008; Silvapulle and Sen, 2005; Sen, 2006; Sen et al., 2007; Kang and Sen, 2008). Linear rank

statistics based on UIP propose the distribution-insensitive clustering of genes. It is also possible

to construct a locally most powerful rank test using a suitable rank scores along with UIP, though

it is too difficult to construct an optimal test based on Uniformly Most Powerful(UMP) (Sidak et

al., 1999; Krishnaiah and Sen, 1985). Gene expression levels are compared of more than 2 groups

using exact tests of homogeneity. By using exact permutation distribution theory, a conditionally

distribution-free test based upon proposed test statistics is used to generate p-values and as a result

is amenable in the setup of a small sample size. It is also computationally tractable and statistically

robust.

2. Preliminary Notation

Consider a DNA microarray experiment having expression data on K genes for n mRNA samples.

The gene expression data are in a K × n matrix X = (Xk,i), with rows corresponding to genes
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and columns corresponding to individual microarray experiments, where xki denotes the expression

measure of gene k in sample i, i = 1, . . . , n, k = 1, . . . ,K. The expression measures xki’s are assumed

to be preprocessed. For comparing several groups, a general model consists of G (> 2) groups of

subjects, each subject having K genes. For simplicity, we assume that there are no missing values

resulting in ngk = ng, ∀k. Let n =
∑G

g=1 ng be the total number of subjects in the pooled sample.

A row vector XXXk = (Xk,1,Xk,2, . . . , Xk,n1 , . . . , Xk,n) represents the pooled sample at gene k. In

this pooled sample, define RRRk = (Rk,1, . . . , Rk,n1 , Rk,n1+1, . . . , Rk,n), where Rk,i is the rank of Xk,i

in the pooled sample among all the n observations in the kth gene.

3. Linear Rank Statistics with UIP

We want to find out the true profile of a gene to one of a specified set of candidate profiles.

Without loss of generality, we focus on monotone increasing pattern among more than 2 groups.

Let µk,i = E(Xk,i) denote the mean expression level of the kth gene in the ith observation. Let µgk

is the mean expression level of the kth gene in the gth group. For the kth gene (or position), we can

formulate H0k vs. H1k as below.

H0k : µ1k = µ2k = · · · = µGk vs. H1k : µ1k ≤ µ2k ≤ · · · ≤ µGk, where µk = (µ1k, . . . , µGk)
′.

The (G− 1)×G matrix is given by

AAA =


−1 1 0 0 0 · · ·
0 −1 1 0 0 · · ·
0 0 −1 1 0 · · ·
...

...
...

. . .
...

...

0 0 0 · · · −1 1

 .

These hypotheses can be restated as the following two hypotheses.

H0k : θθθk = AAAµµµk =

G−1∩
j=1

H0jk = 000 vs. H1k : θθθk = AAAµµµk =

G−1∪
j=1

H1jk ≥ 000,

where H0jk : θjk = µj+1,k − µj,k = 0 vs. H1jk : θjk = µj+1,k − µj,k ≥ 0. These hypotheses are

written in terms of finite UIP. However, an infinite UIP will be formulated as well. These hypotheses

can be restated as the following two hypotheses. For a given aaa,

H0k : θθθk = AAAµµµk =
∩

aaa∈ℜ+G

H0aaak = 000 vs. H1k : θθθk = AAAµµµk =
∪

aaa∈ℜ+G

H1aaak ≥ 000,

where H0aaak : aaa′θk = 0 vs. H1aaak : aaa′θk ≥ 0. The UIP assumes that for testing H0aaak vs. H1aaak,

we have an optimal test. However, the underlying density of gene expression levels Xk,i, i =

1, . . . , n, k = 1, . . . ,K are completely unknown with unknown variance. In this framework, it is

hard to construct either an optimal test based on UMP or a similar test using Uniformly Most

Powerful Invariant(UMPI). In these senses, non-parametrics yield robust statistical inference pro-

cedures that are distribution free (Huber and Ronchetti, 1981). Fortunately, the null hypothesis

H0k is a hypothesis of invariance (under suitable groups of transformation that map the sample

space onto itself). Then it is possible to construct a test for H0aaak vs. H1aaak, that is, the locally most

powerful rank test(LMPR) test for each aaa. By definition, a test is LMPR if among the class of rank

test, it is UMP for H0 against a class H1ϵ of alternatives that are indexed by a parameter △, such

that 0 < △ < ϵ, ϵ > 0 (Sidak et al., 1999; Silvapulle and Sen, 2005). LMPR properties may not be
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available for restricted alternatives (Sidak et al., 1999; Krishnaiah and Sen, 1985). However, UIP-

based LMPR test can handle such a problem. Even though each sample size ng differs by group,

all the n(=
∑G

g=1 ng) observations XXXk = (Xk,1, Xk,2, . . . , Xk,n1 , . . . , Xk,n) for each gene k in the

pooled sample are i.i.d r.v’s under the null hypothesis. Under the null hypothesis of homogeneity,

the joint distribution of n observations for each gene k, remains invariant under any permutation.

This permutation distribution can be obtained by considering every possible n! permutations of the

pooled sample observations among G groups. Hence, conditionally distribution-free tests can be con-

structed by an appeal to this permutational invariance. We denote this conditional probability law

by Pn. For each gene k, define a multivariate linear rank statistics Tgk, g = 1, . . . , G, k = 1, . . . ,K

as follow. For a suitable rank scores a(k), assuming c̄n = 1/n
∑n

i=1 cig = 0,

Tgk =

n∑
i=1

(cig − c̄n) a(Rk,i) =

n∑
i=1

cig a(Rk,i), (3.1)

where

cig =


1

ng
, if i =

g−1∑
l=1

nl + 1, . . . ,

g∑
l=1

nl,

0, otherwise

and TTT = (T1k, . . . , TGk)
′. The mean of Tgk is given by

EPn(Tgk) = (EPn(a(Rk,i)))
n∑

i=1

(cig − c̄n)

=

(
1

n

n∑
i=1

a(Rk,i)

)(
n∑

i=1

cig

)
= 0.

The variance of Tgk is given by

VPn(Tgk) = EPn(Tgk)
2

= VPn(a(Rk,i))
n∑

i=1

(cig)
2 +

∑
1≤i̸=i′≤n

(cig)(ci′g)EPn(a(Rk,i)a(Rk,i′))

=

(
1

n

n∑
i=1

a2(Rk,i)

)
n∑

i=1

(cig)
2 +

∑
1≤i̸=i′≤n

(cig)(ci′g)

(
− 1

n(n− 1)

n∑
i=1

a2(Rk,i)

)

=

(
1

n− 1

n∑
i=1

a2(Rk,i)

)
·

n− 1

n

n∑
i=1

(cig)
2 − 1

n

∑
1≤i ̸=i′≤n

(cig)(ci′g)


=
(
AAA2

n

)(n− ng

n · ng

)
,

where

(n− 1)

n

n∑
i=1

(cig)
2 − 1

n

∑
1≤i̸=i′≤n

cigci′g =
(n− 1)

n

n∑
i=1

(cig)
2 − 1

n

((
n∑

i=1

cig

)2

−
n∑

i=1

(cig)
2

)
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=

n∑
i=1

(cig)
2 − 1

n

n∑
i=1

(cig)
2

=
1

ng
− 1

n

=
(n− ng)

n · ng

and AAA2
n = 1/(n− 1)

∑n
i=1 a

2(Rk,i).

For 1 ≤ g ̸= g′ ≤ G, the covariance of Tgk and Tg′k is

CovPn(Tgk, Tg′k) = EPn(Tgk, Tg′k)

= EPn

(
n∑

i=1

ciga(Rk,i)
n∑

i=1

cig′a(Rk,i)

)

= EPn


∑g

g=1 ng∑
i=

∑g−1
g=1 ng−1

ciga(Rk,i)

∑g′
g=1 ng∑

i′=
∑g′−1

g=1 ng−1

ci′g′a(Rk,i)



=


∑g

g=1 ng∑
i=

∑g−1
g=1 ng−1

cig




∑g′
g=1 ng∑

i′=
∑g′−1

g=1 ng−1

ci′g′

 (EPn(a(Rk,i)a(Rk,i′)))

= AAA2
n

(
− 1

n

)
.

Hence, the permutation variance of TTT k is given by

VVVk = Var(TTTk) = AAA2
nCCCn,

where

CCCn =

n∑
i=1

(ccci − c̄n111n)(ccci − c̄n111n)
′ =

(
δgg′n− ng

n · ng

)
,

δgg′ =

{
1, if 1 ≤ g = g′ ≤ G,

0, otherwise,

ccci = (ci1, . . . , ciG)
′, a G× 1 matrix 111n = (1, . . . , 1)′ and

CCCn =



n− n1

n · n1
− 1

n
− 1

n
− 1

n
· · ·

− 1

n

n− n2

n · n2
− 1

n
− 1

n
· · ·

− 1

n
− 1

n

n− n3

n · n3
− 1

n
· · ·

...
...

...
. . . · · ·

− 1

n
− 1

n
− 1

n
· · · n− nG

n · nG


.

If we define TTT k in terms of the vector ccci, TTT k is
∑n

i=1(ccci − c̄n111n)a(Rk,i). The mean of TTT k is

EPn(TTT k) = (ccci − c̄n111n)EPn(a(Rk,i))

= 000.
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For 1 ≤ k ≤ k′ ≤ K, the covariance matrix of TTT k and Tk′Tk′Tk′ is

CovPn(TTT k,TTT k′) = CCCn× ⊑k,k′ ,

where ⊑k,k′= 1/(n − 1)
∑n

i=1(a(Rk,i) − ān)(a(Rk′,i) − ān) and ān =
∑n

i=1 a(i). The matrix

VVV n(= ((⊑k,k′))) is a Pn-invariant and known matrix. Let TTTn = (TTT 1, . . . ,TTTK)′. Define the

G × K matrix TTT 0
n =

∑n
i=1(ccci − c̄n111n)aaan(RRRi) as the transpose matrix of TTTn, where aaan(RRRi) =

(an1(R1,i), . . . , anK (RK,i))
′. By using the concept of a multivariate linear rank statistics, the mean

and the covariance matrix of TTT 0
n are defined as below.

EPn(TTT
0
n) = 000G×K ,

CovPn(TTT
0
n) = CCCn

⊗
VVV n.

4. Order-Restricted Inference

Given the invariance of VVV n under Pn, we adapt the UIP to formulate a rank test for H0k : θk = 000 vs.

H1k : θk ≥ 000. Let ZZZk = AAATTT k and SSSk = AAAVVV kAAA
′. Let ℘ = {1, . . . , G−1}, and for every a : ∅ ⊆ a ⊆ ℘,

let a′ be its complement and |a| its cardinality. For each a, partition ZZZk and SSSk as

ZZZk =

(
ZZZka

ZZZka′

)
, SSSk =

(
SSSkaa SSSkaa′

SSSka′a SSSka′a′

)
and write

ZZZka:a′ = ZZZka −SSSkaa′SSS−1
ka′a′ZZZka′ ,

SSSka:a′ = SSSkaa −SSSkaa′SSS−1
ka′a′SSSka′a.

The test statistics for the kth gene is

Lk =
∑

∅⊆a⊆℘

I(ZZZka:a′ > 000,SSS−1
ka′a′ZZZka′ ≤ 000)(nZZZ′

ka:a′SSS−1
kaa:a′ZZZ

′
ka:a′), (4.1)

rejecting the null hypothesis for large positive values. By reference to the n!/(n1! · · ·nG!) condition-

ally (permutationally) equally likely realizations of RRRk for each k, we can enumerate TTT k (and hence

Lk); this generates the exact conditional (permutational) null distribution Pn of Lk, so that the

test based on Lk is conditionally distribution free(CDF). Now p-value can be computed as below.

Pk = Pr(Lk ≥ lk), (4.2)

where Lk is a test statistic from the permuted distribution and lk is an observed test statistic. The

behavior of Lk under alternatives depends on the stochastic ordering of µk and these statistics

may not be exact distribution-free nor have identical probability laws. However, for every i <

i′, Xk,i′ −Xk,i has a distribution tilted to the right so that

E{Lk|H1k} ≥ 0, k = 1, . . . ,K.

This motivates us to use tests based on Lk using the right hand side critical region (Sen, 2008,

2006; Sen et al., 2007). A proper multiple testing procedure may be applied to the set of dependent

p-values. The procedure is used to determine which gene has a monotone increasing pattern among

the groups. The choice of rank scores a(k) determine if a test statistic is locally most powerful

(Sidak et al., 1999; Krishnaiah and Sen, 1985). For example, the Wilcoxon rank test is LMPR

when the density is logistic and the normal score test is LMPR when the density is normal. For the

test for the linear trend, the Jonckheere test might be tenable (Odeh, 1972). However, without the

linear ordering or the logistic density, the LMPR property might not work for the Jonckheere test.
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Table 5.1. Linear rank statistics using different scores

α π0 Test statistics Storey bh95

0.05

0.3

Linear rank statistics (Uniform score) 0.049 0.089

. . . (Normal) 0.030 0.035

. . . (Logistic) 0.084 0.003

0.5

Linear rank statistics (Uniform score) 0.066 0.041

. . . (Normal) 0.046 0.040

. . . (Logistic) 0.112 0.042

0.7

Linear rank statistics (Uniform score) 0.098 0.052

. . . (Normal) 0.050 0.049

. . . (Logistic) 0.170 0.089

0.01

0.3

Linear rank statistics (Uniform score) 0.043 0.010

. . . (Normal) 0.007 0.007

. . . (Logistic) 0.008 0.008

0.5

Linear rank statistics (Uniform score) 0.058 0.009

. . . (Normal) 0.009 0.008

. . . (Logistic) 0.113 0.035

0.7

Linear rank statistics (Uniform score) 0.088 0.010

. . . (Normal) 0.010 0.009

. . . (Logistic) 0.174 0.040

5. Numerical Study

Mitogenesis in hormone-responsive breast cancer cells may be stimulated by the steroid hormone

estrogen. The cDNA microarray gene expression levels of a hormone-responsive breast cancer

epithelial cell line with a mitogenic dose of estrogen without other confounding growth factors in

serum were examined. Gene expression changes were measured at 6 time points 1, 4, 12, 24, 36 and

48 hours after estrogen stimulation. The expression levels of DNA replication fork genes stimulated

by estrogen, without growth factors in serum, show that the steroid hormone estrogen plays a

important role of generating Mitogenesis (Lobenhofer et al., 2002). For the purpose of illustration,

the data set in Lobenhofer et al. (2002) is analyzed. The data consists of 1900 genes measured at 6

time points with 8 observations (n = 8) each time point. Gene expression levels are log-transformed.

However, the dataset to which we applied the analysis contains 1000 genes and 5 time points (1, 4,

12, 24, 36 hours after estrogen stimulation), at which each group has 4, 3, 2, 2 and 1 observations,

respectively. The pattern of interest is whether or not mean gene expression levels have monotone

nondecreasing profile over time. We then express these in term of inequalities among the expected

expression levels at 5 time points. Based on 12!/(4!3!2!2!) permutationally equally likely realizations

for each gene k, we enumerate a test statistics Lk. Linear rank statistics along with corresponding

p-values were computed based on different score statistics; uniform(Wilcoxon)(U), Normal(N), and

logistic(L), respectively. Storey’s FDR (storey) and Benjamini and Hochberg (1995)’s FDR(bh95)

were computed for those p-values (Storey, 2002, 2003; Storey et al., 2004; Benjamini and Hochberg,

1995). Table 5.1 displays comparison of FDR procedures with application to breast data, where

π0 was defined as the proportion of true null hypotheses. FDR procedures were computed at a

preassigned level α = 0.05 and 0.01. The study was performed for π0 = 0.3, 0.5 and 0.70. FDR

procedures such as storey and bh95 produced relatively the same results at all levels of α and π0.

Linear rank statistics with normal scores control the FDR (less than α) at any preassigned level α

under all configurations of π0. On the other hand, those with a uniform score or logistic score failed

to control the FDR. The choice of normal score statistics achieved LMPR property in the data.
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