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EXTREME PRESERVERS OF TERM RANK INEQUALITIES
OVER NONBINARY BOOLEAN SEMIRING

LERoOY B. BEASLEY, SEONG-HEE HEO, AND SEOK-ZUN SONG

ABSTRACT. The term rank of a matrix A over a semiring S is the least
number of lines (rows or columns) needed to include all the nonzero entries
in A. In this paper, we characterize linear operators that preserve the sets
of matrix ordered pairs which satisfy extremal properties with respect to
term rank inequalities of matrices over nonbinary Boolean semirings.

1. Introduction

There are many papers on linear operators that preserve some properties of
matrices ([2]-[12]). We call such a topic of research “Linear Preserver Prob-
lems”. These linear preserver problems have been studied for various charac-
terizations of matrices and linear operators during the last century. Beasley
and Guterman ([1]) investigated linear preservers of rank inequalities of matri-
ces over semirings without zero-divisors. And they characterized the equality
cases for some inequalities of matrix functions over semirings in [2]. These
characterization problems are open even over fields (see [3]). The structure of
matrix varieties which arise as extremal cases of these inequalities is far from
being understood over fields, as well as over semirings. A usual way to generate
elements of such a variety is to find a pair of matrices which belongs to it and
to act on this pair by various linear operators that preserve this variety. The
investigation of the corresponding problems over semirings for the column rank
function was done in [3]. The complete classification of linear operators that
preserve equality cases in matrix inequalities over fields was obtained in [4].
For details on linear operators preserving matrix invariants one can see [9] and
[10]. Almost all research on linear preserver problems over semirings have dealt
with those semirings without zero-divisors to avoid the difficulties of multipli-
cation arithmetic for the elements in those semirings ([2]-[7]). However, in the
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case of a nonbinary Boolean semiring, all elements except 0 and 1 in nonbi-
nary Boolean semirings are zero-divisors. So there are few results on linear
preserver problems for matrices over nonbinary Boolean semirings ([11]-[12]).
Kirkland and Pullman characterized the linear operators that preserve the rank
of matrices over nonbinary Boolean semirings in [8]. Since the term rank is an
important matrix function, there are many research papers on term rank and
its preservers ([5]-[7]).

In this paper, we characterize the linear operators that preserve the sets of
matrix ordered pairs which satisfy extremal properties with respect to term
rank inequalities of matrices over nonbinary Boolean semirings.

2. Preliminaries and basic results

Definition 2.1. A semiring S consists of a set S with two binary operations,
addition and multiplication, such that:
- § is an Abelian monoid under addition (the identity is denoted by 0);
- § is a monoid under multiplication (the identity is denoted by 1, 1 # 0);
- multiplication is distributive over addition on both sides;
-s0=0s=0 for all s € S.

Definition 2.2. A semiring S is called antinegative if the zero element is the
only element with an additive inverse.

Definition 2.3. A semiring S is called a Boolean semiring if S is equivalent
to a set of subsets of a given set ), the sum of two subsets is their union, and
the product is their intersection. The zero element is the empty set and the
identity element is the whole set ).

Let Sy = {a1,az,...,ax} be a set of k-elements, P(Sy) be the set of all sub-
sets of Sy, and By, be the Boolean semiring of all subsets of S, = {a1,az,...,ar},
P(Sk). Let Sk be a Boolean semiring of subsets of Sy = {a1,as,...,ax}, that
is a subset of P(Sk). It is straightforward to see that a Boolean semiring Sy
is a commutative and antinegative semiring. If Si consists of only the empty
subset and Sk, then it is called a binary Boolean semiring. If Sy is not a binary
Boolean semiring, then it is called a nonbinary Boolean semiring. Let M, ,(Sk)
denote the set of m x n matrices with entries from the Boolean semiring Si. If
m = n, we use the notation M, (Sy) instead of M, ,,(Sg).

Throughout the paper, we assume that m < n and Si denotes a nonbinary
Boolean semiring, which contains at least 3 elements. The matrix I,, is the
n x n identity matrix, Jp,, is the m x n matrix of all ones and O,, , is the
m X n zero matrix. We omit the subscripts when the order is obvious from the
context and we write I, J and O, respectively. The matrix F; ;, which is called
a cell, denotes the matrix with exactly one nonzero entry, that being a one in
the (i,7)!" entry. Let R; denote the matrix whose i*" row is all ones and is
zero elsewhere, and C; denote the matrix whose j*" column is all ones and is
zero elsewhere.
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Definition 2.4. Let S; be a nonbinary Boolean semiring. An operator T :
M0 (Sk) = My n(Sk) is called linear if it satisfies T(X +Y) = T(X) +T(Y)
and T(aX) = oT(X) for all X,Y € M, ,(Sg) and « € Sy.

Definition 2.5. A line of a matrix A is a row or a column of the matrix A.

Definition 2.6. The matrix A € M, ,,(Sk) is said to be of term rank k (t(A) =
k) if the least number of lines needed to include all nonzero elements of A is
equal to k. Let us denote by c(A) the least number of columns needed to
include all nonzero elements of A and by r(A) the least number of rows needed
to include all nonzero elements of A.

Definition 2.7. The matrix A € M, ,(Sk) is said to be of Boolean rank r if
there exist matrices B € M., (Si) and C' € M, ,,(Sg) such that A = BC and r
is the smallest positive integer such that such a factorization exists. We denote

b(A) =r.

By definition, the unique matrix with Boolean rank equal to 0 is the zero
matrix O.
Arithmetic properties of term rank of Boolean matrices are restricted by the
following list of inequalities established in [1]:
(1) t(A+ B) <t(A) +t(B);
(2) t(A + B) > max{t(A), {(B)};
(3) t(AB) < mm{?"( ), ¢(B )};
(4) t(AB) > t(A) +(B) —
(5) IfSisa subsemlrmg of posmve reals, then p(AB)+p(BC) < t(ABC)+
t(B), where p(X) is the real rank of the matrix X.

Below, we use the following notation to denote sets of Boolean matrices that
arise as extremal cases in the inequalities listed above:
Tea(Sk) = {(X,Y) € My, n(Sk)? | #(X +Y) = ¢(X) +t(Y)};
Tsm(Sk) = {(X,Y) € Mm,n(gk)z | t(X +Y) = max{t(X),¢(Y)}};
Tonn(Sk) = {(X,Y) € Mn(Sg)? | H{(XY) = min{r(X),c(Y)}};
Tma(Sk) = {(X,Y) € My (Sk)? | H(XY) = t(X) + (V) — n};
Tt (Sk) = {(X,Y, Z) € M, (Sk)? | (XY Z) +t(Y) = t(XY) + (Y Z)}.

Definition 2.8. Let S be any semiring. We say an operator, T : M, ,(S) —
M. (S), preserves a set P if X € P implies that T(X) € P, or, if P is a set
of ordered pairs (triples), provided that (X,Y) € P ((X,Y,Z) € P) implies
(T(X), T(Y))eP (T'(X), T(Y), T(Z)) € P, respectively).

Definition 2.9. The matrix X oY denotes the Hadamard or Schur product,
i.e., the (i,7) entry of X oY is x; jy; ;.

Definition 2.10. Let S be any semiring. An operator T : My, ,(S) —
M n(S) strongly preserves the set P if X € P if and only if T'(X) € P, or, if
P is a set of ordered pairs (triples), provided that (X,Y) € P ((X,Y,Z) € P)
if and only if (T'(X),T(Y)) e P (T(X),T(Y),T(Z)) € P, respectively).
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Definition 2.11. Let S be any semiring. An operator T : M, (S) —
M n(S) is called a (P,Q, B)-operator if there exist permutation matrices
P and @, and a matrix B € M,,, ,,(S) with no zero entries, such that

(2.1) T(X) = P(X o B)Q
for all X € M, ,,(S), or, if m =n,
(2.2) T(X)=P(Xo B)tQ

for all X € M, »,(S), where X' denotes the transpose of X. Operator of the
form (2.1) is called non-transposing (P, Q, B)-operator; operators of the form
(2.2) is called transposing (P, Q, B)-operator. A (P,Q, B)-operator is called a
(P, Q)-operator if B = J, the matrix of all ones.

In [4] linear preservers of extremal cases of classical matrix inequalities over
fields were characterized. On the other hand, linear preservers for various rank
functions over semirings have been the object of much study during the last 30
years, see for example [2]-[12]. In particular term rank was investigated in the
last years, see for example [5, 6, 7]. The aim of the present paper is to classify
linear operators that preserve pairs of matrices that attain extreme cases in the
above term rank inequalities 1-5.

Definition 2.12. We say that the matrix A dominates the matrix B if and
only if b; ; # 0 implies that a; ; # 0, and we write A > B or B < A.

We begin with some basic results which can be found in [11] and [12]

Theorem 2.13 ([11, Theorem 2.1)). Let T : My, »,(Sk) = My, 0 (Sk) be a linear
operator. Then the following conditions are equivalent:

(a) T is bijective;

(b) T is surjective;

(¢c) T is injective;

(d) there exists a permutation o on {(i,5) |i=1,2,...,m;5 =1,2,...,n}
such that T(E; ;) = Eq(; 5y for all1<i<m and 1 < j <n.

Lemma 2.14. Let T : My, o (Sk) = My n(Sk) be a linear operator which maps
lines to lines and T be defined by the rule T(E; ;) = b; jE,q jy, where o is
a permutation on the set {(i,7) | i = 1,2,...,m;j = 1,2,...,n} and b;; is
a nonzero element of Sy which is not a zero divisor. Then T is a (P,Q, B)-
operator where B has no entry that is either zero or a zero divisor.

Proof. For the case S, = By, see [12, Lemma 2.4]. In the more general case, the
same proof applies with the observation that a line is mapped into a weighted
line (not all entries are 1, but rather nonzero). O

Example 2.15. Consider the linear operator T' : M3 3(B3) — M3 5(B3) defined
by T(X) = X o B for all X € M3 3(B3) with Bs = P({a,b,c}). Then t(B) =3
and b(B) = 1 but we show that T" does not preserve the term rank if B # J.
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{a;b} {a,b,c} {a,b} {a} {b} {c}
For, let X = | {a,c} {a,c} {ab} | and B = | {a} {6} {c} |. Then ¢t(X) = 3, but
{a} A{b,c} {a,b} {a} {6} {c}

{a} {b} 0
T(X)=XoB=|{a} 0 0

{a} {0} 0
That is, t(T(X)) = t(X o B) = 2 # 3 = t(X). Thus ¢(B) = 3 but T does not

preserve the term rank since every nonzero nonunit entry of B is a zero-divisor.
In fact, the following is true:

Theorem 2.16. Let S be any semiring and T : My, n(S) = My n(S) be the
linear operator defined by T(X) = X o B for some B € M,, o(S). If B has
entries which are zero or zero-divisors, then T does not preserve any term rank.

Proof. Let 1 < r < min{m,n}. If b; ; is zero, or a zero-divisor, let ¢ € S be
chosen so that b; j¢g = 0. Let X be a matrix with exactly r nonzero entries
whose term rank is r and such that z; ; = ¢. Then T(X) has at most r — 1
nonzero entries and hence has term rank at most r — 1. Thus, T does not
preserve term rank r. O

We now require that the matrix B for any (P, Q, B)-operator consists only
of nonzero entries which are not zero-divisors.

3. Extremes preservers of term rank over nonbinary Boolean
semirings

In this section, we characterize the linear operators that preserve the extreme
set of matrix pairs, which are driven from the inequalities of the term ranks of
matrices over nonbinary Boolean semiring.

We begin with lemmas.

Lemma 3.1. Suppose M is any finite set and f : M — M is a function. Then
there exists an integer p > 1 such that fP is idempotent.

Proof. There are only finitely many functions taking M to M. Therefore the
sequence {f, f2,..., f", ...} cycles after n is sufficiently large. That is, there
exist integers NV > 1 and d > 1 such that for all m > N and n > N, f™ = f"
if m = n (mod d). Let p = Nd; then fP = f2P. O

Note that the term rank depends only on which entries are non zero, not
on which nonzero element they are. Thus if B has no zero entries and no
zero-divisor entries, then ¢(X o B) = ¢(X).

Lemma 3.2. Let Sy be a nonbinary Boolean semiring, and T : M, ,(Sk) —
M, (Sk) be a (P, Q, B)-operator. Then T preserves all term ranks.
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Proof. Assume that T is a (P, @, B)-operator. For any X € M,, ,,(Sg), we have
t(T(X)) =t(P(X o B)Q) =t(X o B) = t(X)
or if m = n,
t(T(X)) =t(P(X o B)'Q) = t((X o B)") = t(X).
Hence any (P, @, B)-operator preserves all term ranks. O

Theorem 3.3. Let S be a nonbinary Boolean semiring, T : My, »(Sk) —
M. (Sk) be a surjective linear map. Then T preserves the set Toa(Sk) if and
only if T is a (P,Q)-operator, where P and @Q are permutation matrices of
appropriate sizes.

Proof. (<) Assume that T is a (P,Q)-operator. Then T preserves all term
ranks by Lemma 3.2. Therefore for any (X,Y) € T5a(Sk), we have t( X +Y) =
t(X)+t(Y). Thus

H(T(X)+TY)=t(T(X+Y))=t(X+Y)
=t(X) +t(Y) =t(T(X)) + t(T(Y)).

Hence (P, Q)-operators preserve the set Tgq(Sk)-

(=) If T'is surjective, then by Theorem 2.13 we have that T'(E; ;) = E,(; ;)
foralli,7,1 <i<m,1<j<n, where o is a permutation on the set of pairs
(i,5):

Let us show that 7" maps lines to lines. Suppose that the images of two
cells are in the same line, but the cells are not, say F; ;, Ey; are the cells such
that t(EiJ + EkJ) = 2 and t(T(EiJ + Ek,l)) = 1. Then (Ei,j;Ek,l) S ﬁa(Sk)
but (T(E; ;),T(Ek1)) ¢ Tsa(Sk), a contradiction. Thus 7" maps lines to lines.
Thus by Lemma 2.14 T is a (P, Q)-operator where P and ) are permutation
matrices of appropriate sizes. (I

Now we can improve Theorem 3.3 by removing the surjectivity assumption:

Theorem 3.4. Let S, be a nonbinary Boolean semiring, T : My, n(Sk) —
My, (Sk) be a linear map. Then T strongly preserves the set Tsq(Sk) if and
only if T is a (P, Q, B)-operator, where P and Q are permutation matrices of
appropriate sizes.

Proof. (<) By Lemma 3.2, (P, Q, B)-operator preserves the term rank. Hence
it strongly preserves the set T, (Sy) as we see in the proof of Theorem 3.3.

(=) Suppose that T strongly preserves T4, (Sy) and S, is finite with identity
1. By Lemma 3.1, there is some positive integer d such that for L = T,
L? = L. Tt is easy to see that L strongly preserves Tsq (Sk).

Suppose that there exists ¢, 1 < ¢ < m, such that L(R;) is not dominated
by R;. Then there is a pair of indices (r, s) such that E, ; is not dominated by
R; and L(R;) > E, 5. Let L(R;) = X 4+ aE, s where z, s = 0 and a # 0.

Now,

L(aR;) = L*(aR;) = L(a(L(R;))) = L(a(X + aFE,,)) = L(aX + a*E,)
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but ¢ = a and a + a = a, so
L(aR;) = L(aX + aFE, ;) = L(aX +aE, s + aE, )
=L(aX +aFys) + L(aE, ) = L(aR;) + L(aE, s).

Thus, t(L(aR;) = t(L(aRr) + L(aE,s)). But, (aR;,aE,s) € Tsa(Sk) and
L strongly preserves Ts,(Sk), so that (L(aR;), L(aE,s)) € Tsa(Sk). That is
t(L(aR;)) + t(L(aErs)) = t(L(aR;) + L(aEys)) = t(L(aR;)). It follows that
t(L(aErs)) = 0, and hence that L(aF, ;) = O, a contradiction.

We have established that L(R;) < R; for all 4. Similarly, L(C;) < C; for
all j. By considering that E; ; is dominated by both R; and C; we have that
L(E; ;) < E; ;. Since S is antinegative, we have that T also maps a cell to a
multiple of a cell. That is, T'(E; ;) has only one nonzero entry for all ¢, j, and
T'(J) has all nonzero entries.

So T induces a permutation, o, on the set of subscripts {1,2,...,m} x
{1,2,...,n}. That is, T(E; ;) = b; jE,( ) for some scalars b; ;. But T' does
not preserve term rank if b; ; is zero or a zero-divisor. Moreover we can show
that T maps lines to lines by repeating the arguments used in the proof of
Theorem 3.3. Therefore we obtain that T is a (P, Q, B)-operator. O

Theorem 3.5. Let S, be a nonbinary Boolean semiring, T : My, n(Sk) —
M0 (Sk) be a surjective linear map. Then T preserves the set Tem(Sk) if and
only if T is a (P,Q)-operator, where P and @ are permutation matrices of
appropriate sizes.

Proof. If T' is surjective, then by Theorem 2.13 we have that T'(E; ;) = E, j)
foralli,7,1 <i<m,1<j<n, where o is a permutation on the set of pairs
(ir):

Suppose that the images of two cells are not in the same line, but the cells
are, say E; j, E; ; are the cells such that T'(E; ;), T'(E; ;) are not in the same line,
ie., ﬁ(T(Ei,j + Ei,l)) = 2. Then (Ei,jaEi,l) S ﬁm(gk) but (T(Ei,j),T(E“)) ¢
Tem(Sk), a contradiction. Thus T~! maps lines to lines. By Lemma 2.14 it
follows that 7! is a (P, Q)-operator where P and @ are permutation matrices
of appropriate sizes. Hence, T is also of this type.

Conversely, by Lemma 3.2, any (P, Q)-operator preserves the term rank.
Thus as we see in the proof of Theorem 3.3, any (P, Q)-operator preserves the
set Tom (Sk)- O

Theorem 3.6. Let Sy be a nonbinary Boolean semiring, T : ML, (Si) — M, (Sk)
be a surjective linear map. Then T preserves the set Tomn(Sk) if and only if T
is a nontransposing (P, Pt)-operator, where P is a permutation matriz.

Proof. (<) By similar proof of the Lemma 3.2, it is easy to see that any
nontransposing (P, Pt)-operator preserves t(A), ¢(A) and r(A). Therefore any
nontransposing (P, P?)-operator preserves the set Ty, (Sk).

(=) Assume that T preserves the set T, (Sk). Since T is surjective, by
Theorem 2.13 one has that T'(E; j) = Eu; -
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Let us show that T transforms lines to lines. For all k one has that (E; ;, Ej «)

€ Tran (Sk) since
t(Ei,jEj,k) = t(Ezﬁk) =1= min{r(EiJ—), C(Ejﬁk)}.
Thus (T'(E;,;), T(E; k) € Tmn(Sk) by assumption, so
HT(E; )T (Ejr)) = min{r(T(Ei;)), o(T(Ejx))} =1

since T transforms cells to cells. But T'(E; ;)T (Ejx) = Eq(,j)Eq(jk) so that
Esjky 1s in the same row as F,(; 1) for every k. That is, 7" maps rows to
rows. Similarly T maps columns to columns. That is, T(X) = PXQ for some
permutation matrices P and Q.

Therefore, T(E; ;) = Ey(),r(j) Where o is the permutation corresponding to
P and 7 is the permutation corresponding to Q'. But, (F1:, Ei1) € Tomn(Sk)-
Thus (Eg(1),r(i)> Eo(i),r1)) € Tmn(Sk) by assumption, and hence 7 = o. This
implies that @Q* = P and hence T is a nontransposing (P, P')-operator.

To study linear preservers of the equality in the multiplicative low bound
the following reduction is vital:

Lemma 3.7. Let Sy be a nonbinary Boolean semiring, and T : M, (S;) —
M, (Si) preserve the set Tma(Sk). Then T preserves the set of matrices with
term rank n.

Proof. Let A = 0 and let B be any matrix of term rank n over S;. Then,
t(A) = 0, t(AB) = 0. Hence, t(AB) = t(A) + t(B) — n. It follows that
t(T(A)T(B)) =t(T(A)) +t(T(B)) —n. That is 0 = 0+ ¢t(T(B)) — n. It follows
that ¢(T'(B)) = n. That is, T preserves term rank n. O

Lemma 3.8. Let Sy be a nonbinary Boolean semiring, and T : M, (S;) —
M, (Sk) be a surjective linear map. Then T preserves the set of matrices with
term rank n if and only if T is a (P, Q)-operator where P and Q are permutation
matrices of order n.

Proof. (<) By Lemma 3.2, any (P, Q)-operator preserves all the term ranks.
Thus T preserves the set of matrices with term rank n.

(=) By Theorem 2.13 one has that T'(E; j) = Eq(; ;) for all4,5,1 <i,j <mn,
where ¢ is a permutation on the set of pairs of indexes. Let us show that 7!
maps lines to lines. Assume that the pre-image of a row is not dominated by
any line. Then there are indexes i, k, [ such that T=1(E; ) and T~(E; ;) are
not in one line. That is, there is indexes p,r,q,s, p # r, ¢ # s, such that
T~YEix+Ei)) < Ens+ Ep g, and T~YE; ;, + E; ;) is not dominated by each
of the cells E, s, Ep 4. By extending E, s + Ep , to a permutation matrix by
adding n — 2 cells, we find a matrix A such that ¢(A) = n. Since T preserves
term rank n by assumption, one has that ¢(T(4)) = n. On the other hand,
T(A) is dominated by (n — 1) lines since T'(E, ) = E;  and T(E, 4) = E;; lie
in one row. This is a contradiction with ¢(T'(A)) = n. Thus the pre-image of
every row is a row or a column. Similarly, the pre-image of every column is a
row or a column. It follows by Lemma 2.14 that T is a (P, Q)-operator. O
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Theorem 3.9. Let Sy be a nonbinary Boolean semiring, T : M, (S) — M, (Sk)
be a surjective linear operator. Then T preserves the set Tmaq(Sk) if and only
if T is a nontransposing (P, Pt)-operator, where P is a permutation matriz of
order n.

Proof. (<) Let us prove that a nontransposing (P, P*)-operator preserve the
set Trma(Sk). By Lemma 3.2 any (P, Q)-operator preserves all the term ranks.
Thus the right-hand side of the equality determining 7,4 (Sk) is not changed
under the mapping by a nontransposing (P, Pt)-operator T' and the left-hand
side of the equality also is not changed since ¢(T'(X)T(Y)) = t(PX P'PY P') =
t(PXY Pt) = t(XY).

(=) Assume that T' preserves the set 7,,4(Sk). Then by Lemma 3.7 T
preserves the set of matrices with term rank n. Since 7T is surjective, by applying
Lemma 3.8 we obtain that T is a (P, Q))-operator.

Now, let us see that transposition transformation does not preserve the
set Tma(Sk). Indeed, the pair (X = E;;,Y = I — Ej;) € Tma(Sk) since
HXY)=t0)=0=1+(n—-1)—n = t(X) + t(Y) — n. However, (X! =
Ejyi,Yt =1- Ej,j) Q_ﬁ Tma(Sk) since t(Xth) = t(Ejﬁi) =1 7& 0.

It remains to prove that PQ) = I the identity matrix. Let us assume that a
nontransposing (P, Q)-operator preserves the set 7;,q(Sk). Thus one has that
t(XY) = ¢(PXQPYQ) = t((XQPY) for all pairs (X,Y) € Tra(Sk). The
matrix QP is permutation matrix as a product of two permutation matrices.
Assume that QP permutes i’th and j’th columns of X. Let X = E;;, Y =
iz By Thus t(X) =1, 1(Y) =n—1,{XY) =1(0) = 0 = ¢(X) + ¢(Y) — n,
ie, (X,Y) € Tma(Sk). On the other side, XQP = E;;. Thus XQPY =
E; ; #0. Hence, (T'(X), T(Y)) = (PXQ,PYQ) ¢ Trma(Sk). This contradiction
concludes that QP = I and hence T is a nontransposing (P, P?)-operator. [

Theorem 3.10. Let Sy be a nonbinary Boolean semiring, and T : M, (Sg) —
M., (Sk) be a surjective linear map. Then T preserves the set Tmi(Sk) if and
only if T is a nontransposing (P, P')-operator where P is a permutation matriz
of order n.

Proof. (<) By Lemma 3.2, any (P, Q)-operator preserves all the term ranks.
Thus as we see in the proof of Theorem 3.3, any nontransposing (P, P?)-
operator preserves the set 7Tp,:(Sk).

(=) By Theorem 2.13 one has that T'(E; j) = Ey(; 5 for all 4,5, 1 <i,j <n,
where ¢ is a permutation on the set of pairs of indices.

It can be directly checked that (E; ;, Ejk, Exi) € Tmi(Sk) for all [ and for
arbitrary fixed i, j, k. Thus

tHT(E; ;)T (Ejx)) + t(T(Ej )T (Exy))
= t(T(E:i ;)T (Ej )T (Exp)) + (T (Ejk))-

Let us denote T'(E; ;) = Epq, T(Ej k) = Er s, and T(Ey,;) = Ey,. Since
t(E,s) =10, it follows from the equality (1) that either ¢ =7 or s = u or

(1)
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both. If for all [ = 1,...,n it holds that ¢ = r or for all [ = 1,...,n it holds
that s = u, then it is easy to see that T maps lines to lines. Assume that there
exists an index [ such that r # ¢. Thus by (1) s = u. Hence, for arbitrary m,
1 <m < none has that (E; j, E; k, Ex.m) € Tmt(Sk). Denote, T(Ekm) = Ey,».
Using the previous notations, one obtains that (Ep 4, Ers, Ew,z) € Tmt(Sk).
Since g # r it follows that w = s and hence T maps kth row to sth row.
Thus in this case we obtain that rows are transformed to rows. By the same
arguments with the first matrix it is easy to see that columns are transformed
to columns. In the other case s # u and ¢ = r one obtains that rows are
transformed to columns and columns to rows.

By Lemma 2.14 it follows that there exists a permutation matrices P and
Q such that T'(X) = PXQ for all X € M,(S) or T(X) = PX'Q.

In order to show that the transposition transformation does not preserve
Tmt(Sk) it suffices to note that (E;;,I,1 — E; ;) € Tmt(Sk) and (E;;, I, 1 —
Ej ;) ¢ Trnt(Sk).

In order to show that @ = P* it suffices to note that(E; ;, E;;, E;;) €
Tnt(Sk). Denote that T(E; ;) = E,) ;) where o is the permutation cor-
responding to P and 7 is the permutation corresponding to Q. Therefore,
(Ea(i),'r(j)aEa(j),'r(j)aEa(j),‘r(i)) S Tmt(Sk) by assumption, and hence 7 = o.
This implies that Q* = P and hence T is a nontransposing (P, P*)-operator. [J

As a concluding remark, we have characterized the linear operators that pre-
serve the extreme sets of matrix ordered pairs over nonbinary Boolean semir-
ings which come from certain term rank inequalities over nonbinary Boolean
semirings.
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