319

Journal of the Korean
Statistical Society
Vol. 26, No. 3, 1997

Rank Tests for Multivariate Linear Models
in the Presence of Missing Data |

Jae Won Lee ! and David M. Reboussin 2

Abstract

The application of multivariate linear rank statistics to data with
item nonresponse is considered. Only a modest extension of the com-
plete data techniques is required when the missing data may be thought
of as a random sample, and an appropriate modification of the covari-
ances is derived. A proof of the asymptotic multivariate normality is
given. A review of some related results in the literature is presented
and applications including longitudinal and repeated measures designs
are discussed.
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1. INTRODUCTION

Consider a sample in which several responses are collected for each unit.
We may have several different variables measured, a single quantity monitored
at discrete time points, or several variables measured over time. Longitudinal
and repeated measures designs may be described in this way. It is common
to use such multivariate data to discover differences between subgroups of a
sample.

We are interested in the case for which a rank based approach is desirable,
and for which some of the items may be missing. In particular, for data
of this type, multivariate linear rank statistics encompass a wide variety of
techniques for robust analyses. When items are missing for some units, as
will often be the case in practice, some adjustment of the general theory of
rank methods for multivariate linear models is necessary. In this paper, a
theorem establishing the asymptotic behavior of these statistics is given for
the case in which the missing items may be treated as randomly selected
from what would have been the complete sample. We prove the asymptotic
normality of general multivariate linear rank statistics in the context of the
linear model under a permutation distribution. For the notation and some
technical details we refer to Puri and Sen (1985).

Performing nonparametric tests in the context of the linear model when
some data are not fully observed is a common problem. Many special cases,
and some quite general cases, have been carefully treated in the literature.
Some of the earliest work appears to be that of Koziol, Maxwell, Fukushima,
Colmerauer & Pilch (1981) and Koziol & Maxwell (1982). Another applica-
tion of this approach can be found in Servy & Sen (1987) where permutation
tests for multivariate analysis of variance and covariance models in the pres-
ence of missing variables are considered.

For many real problems of interest, items missing from the data may be
thought of as a randomly chosen subsample. The method we propose for this
case is a straightforward extension of results found in textbooks on linear rank
statistics. In fact, if the missing data are missing at random, the standard
statistics calculated on the observed values for each item can be used provided
their covariances are adjusted. Furthermore these statistics still have the large
sample multivariate normality, with the appropriate covariance, which is well
established for their complete data counterparts.

In section 2, notation and basic results are reviewed and summarized
for multivariate linear rank statistics and rank tests for multivariate linear
models. Section 3 establishes the asymptotic distribution of these statistics
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with missing data. Section 4 discusses these results in the context of specific
applications.

2. BACKGROUND AND NOTATION

In a sample of N independent units, denote the random p—vector for
the response from the i** unit as X; = (X;,... y Xip)'. X; has distribution
function F; with j** marginal F;j;1. For theoretical convenience, the Fyj; are
assumed continuous, so that for every j the observations Xi;,..., Xy; are
distinct with probability one; that is, we ignore ties among the observations.
The general linear model specifies

X;=a+pc +e,

where @ = (ay,...,a,) is a common intercept vector, c; = (Ci1y-- -y Cig)
is a vector of ¢ regressors (or independent variables), and 8 = ((8;,)), for
ij=1,...,p, h=1,...,q, is a matrix of regression coefficients. ¢, is an error

term with distribution function F, so that Fi(x) = F(x — a — fc;).
In many applications, individuals will belong to two or more treatment
groups. The design matrix for the entire sample is

C1 ‘i ... Ciq

Cn CNT ... Cng Nxq.

When ¢ > 1 we allow more than two treatment groups or several regression
vectors.
We observe a p-vector of responses in some sample havmg N members.

Let j =1,...,p, and for the j** response, denote the ranks RNI, - R%)N, SO
that for the i** individual we observe Ry; = (Rm, e R§53 ), and the matrix

of ranks for all the data, called a rank—collection matriz is

responses : j

Ry, RS; ... R(P)
Ry = : = : individuals :
RNN RS%V “ee R(p)

Nxp.
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Dropping the subscript N, the permutation distribution is derived as fol-
lows. Define R* to be the matrix of ranks corresponding to R with its rows
permuted so that the first column is (1,..., N)". For example, the first step
would be to find the row having a 1 in its first column (there must be one)
and exchanging it with the first row. All matrices of ranks from which a
particular R* can be obtained by rearranging columns (that is, by ignoring
the indexing of the variables) will be considered permutationally equivalent.
Each equivalence class has N! members, and there are (N!)P~! such classes
(Puri and Sen, 1985).

The statistics to be considered here depend on the data only through
Ry. We consider for each j a set of N rank scores ay;(i), or simply a; (2).
The Wilcoxon score, i/(N + 1) — 1/2, is a common example. In all our
notation, when there is no danger of confusion, the subscript N will be
dropped. For theoretical work, it is convenient to define the rank scores
using a score function ¢, with a;(3) = ¢;(i/(N + 1)), wherei=1,...,N. It
is also possible to define the rank scores equivalently as a;(i) = E ¢; (U(i)) ,
where Uq) < -+- < Un) are N ordered observations sampled from a uniform
(0,1) distribution, so that EU = i/(N +1). The score function can be
applied to the rank matrix Ry and the result is known as the score matriz.

The pq x 1 vector of linear rank statistics L is defined by L = (Ljs),,,
j=1,...,p, h=1,...,q, where

N
i=1

is a linear combination of the rank scores for the j* response.

Under the permutational probability measure Py, E(L|Py) = (N¢h @;);, »
j=1,...,p, h=1,...,q, where ¢, = N1 T ¢y and @; = NIYN a;(3).
Furthermore, V (L|Py) = C® YV, where C = ((Cpw)), b, K =1,...,q, is

defined by
N

Cun = Z (cin — Tn) (Cin' — Twr)

i=1

and V = ((v;;1));j'=1,..p is defined by

iy = (N =07 3 oy ) = ) ey (B) - 3] (22)

It is often possible to make @; = 0 and/or ¢, = 0 without loss of generality.
Note that V depends on the data but is invariant under Py .
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Under suitable assumptions on F' and the ¢;, Puri and Sen (1985) discuss
the rank—order test of the hypothesis Hy: 3 =0 vs. H : B # 0. The test
to be considered here is based on pg x 1 vector L defined in equation (1).

Note that V is stochastic but invariant under Py. We assume that C
and V are positive definite. In fact, if C is not of full rank, then the Ly
are not all linearly independent, and hence there exists a subset of ¢’ (< q)
elements of L which are linearly independent. In that case, one may consider
the corresponding minor of C (of order ¢’ x ¢'), which will be positive definite,
and replace q by ¢’ everywhere. Hence, without any essential loss of generality,
we may assume that ¢ = ¢’ (Puri and Sen, 1985, Section 5.3).

From Theorem 5.4.2 of Puri and Sen (1985), under H, : B = 0 and the
permutation model Py, L has asymptotically a multivariate norma)l distri-
bution with mean E(L|Py) and the covariance matrix C ® V of rank pq. It
follows that £ = (L — E[L])" (C®V)~! (L — E[L]) has an asymptotically x*
distribution with pq degrees of freedom.

3. MULTIVARIATE LINEAR RANK STATISTICS IN THE
PRESENCE OF MISSING DATA

Two sample case

We first consider the two sample rank test for ¢ = 1. Suppose there are
missing values in the data; that is, among the X 155+ - -» X n; only N(j) values
are observed. We define a group of subjects O; such that subject i is in 0, if
and only if X;; is observed. The rank scores and statistics are defined as in
the previous section, but using for each j the ranks of X i; among the N (j)
observed subjects. Thus for each j a set of N (j) rank scores a;(i) and denote
the rank statistics L;. That is, for observed subject i, a;(i) and for each

variable .
L; = Z ¢:ia; (Rg)(j)i) ’

'iGOj

where RS%J.),. is the rank of X;; among the N (j) observed subjects.

Koziol et al. (1981) and Servy & Sen (1987) assigned all missing scores the
value a (zero assuming the scores are centered) and proposed the multivari-
ate linear rank statistics based on the observed data only. Treating missing
scores as having been observed at zero restricts the missing values to be near
the median of the observed values, and this restriction cause the variance
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of the rank statistics to be underestimated. For example, the variance of
{-1,0,0,0,1} is less than that of {-1,0, 1}, although they have the same
mean.

To avoid this, we consider all possible combinations of the missing ranks.
That is, any value can be assigned to the missing score. Let W; be a random
variable which assigns ranks for missing units on the j-th variable. If the
missing data are missing at random(MAR), then each of N!/N G = M;
combinations of the missing ranks will be equally assigned. That is, Pr[W; =
w] = MI;, w=1,...,M; forall j (=1,...,p). After assigning the missing
ranks, we obtain the rank statistics, say L; (w), based on the complete data.

The following theorem, which is more general than those of Koziol et
al. (1981) and Servy & Sen (1987), establishes the asymptotic multivariate
normality for these statistics.

Theorem 3.1 Suppose that all the conditions in Theorem 5.4.2 of Puri and
Sen (1985) are satisfied. Then, under Hp in section 2 and the permutation
model Py, as N(j) — 00,5 =1,...,p,L(obs) = (L;);=1..., has an asymptot-
ically multivariate normal distribution with mean (N (j) ¢;a; )j=1,...p,» Where

() = Lieo; ci/N(j) and @; = Yieo, 45 (Rx)(j)i) / N(j), and covariance matrix
[ = ((v;;)) of rank p, where

i( gt N (a,(RY)) i)
Vi = ci—¢C — a; ) —a;)
i o N-—-1 N(]) £, J N(j) ]

and for j # 7',
- 2 1 ) 0
= r J — 2 —
Yii' = ;(Ci - ) N —1 ie;)k (a]- (RN(J')i) - a]-) (a’j'(RN(j’)z‘) - aj') :

The proof is given in Appendix A.

General case

Now we consider more general case where ¢ > 1, which can be used to
compare more than two samples. We further define the pq x 1 rank statistics
L(obs) = (Ljh)j=1,._,p, h=1,..,9> where

Ljn = Z c"(h)a’j(R%)(j)i)'
i€0;

It follows that, under Ho and the conditions given by Puri and Sen (1985),
L(obs) has an asymptotically multivariate normal distribution with pg x 1
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mean vector (N (7)€ 4)@;)j=1,..ph=1,.,q, Where &) = Yieo, Ci(r)/N(j), and
the covariance matrix I'* of rank pq. Here, )Y (c;—¢)? in T is replaced by ¢x q
matrix ((Chur)), which is defined in section 2. The proof is a straightforward
extension of Appendix A and the outline is given in Appendix B.

4. APPLICATION TO THE IPPB TRIAL

One motivation of this research was the analysis of clinical trials in which
subjects enter sequentially, are measured repeatedly, and may be monitored
at irregular intervals for early evidence of treatment effects. It is common
to perform nonparametric tests in studies of this sort. Consider values of
the response at several interim analyses as items measured on each patient:
allowing for staggered entry means that some items, at the earlier analyses,
will be missing. Since we hope that time of entry is independent of treatment
effect, such an experimental design falls into the framework of the previous
sections. A flexible group sequential testing procedure, developed by Lee and
DeMets (1992), is a direct application of the theory in section 3. Suppose that
N (1) individuals enter the trial up to the i-th, I = 1,..., K, interim analysis.
Note that N(1) < N(2) < ... < N(K). It is clear that, at I-th, I =1,..., K,
interim analysis, N (1) is the total number of subjects, and thus we need to
consider the permutation model Py @) in Theorem 3.1. Therefore, it follows
that, at /-th interim analysis,

NO) ]
= (e~ E)ZN(I) Z(GN(J)J (BSVy:) = awg )2,
i=1

and for k < I,

N () N (k)
Z(C c) N(l) Z(aN(J)J (RN(J)l) an (3);)(an () (RN(]’)z) an(j);)-

We consider a multicenter trial comparing intermittent positive pressure
breathing (IPPB) therapy with compressor nebulizer therapy in patients with
chronic obstructive pulmonary disease (IPPB Group, 1983). 985 patients
were randomly assigned to the treatments, 500 patients to IPPB treatment
and the others to compressor nebulizer treatment, and followed by quarterly
clinic visits for an average of 33 months. The volume expired during the first
second of forced expiration (FEV) were measured with rolling seal spirometer.
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While the analysis of this trial showed no significant difference between the
treatment groups in change of lung function, i.e. the annual rate of decline of
FEV, we shall use these data, which involve staggered entry of the patients
and arbitrarily spaced clinic visits, to illustrate a proposed group sequential
procedure based on the linear rank test statistics.

The experiment started in January of 1978. Suppose that the data mon-
itoring committee met once a year, and each interim analysis was done on
the first day of the year, i.e. the first look was on January 1 of 1979 and
second look was on January 1 of 1980 etc.. Suppose also that the committee
limited the total number of interim analyses to a maximum of five. Since
the experiment ended in March of 1983, we have five interim analyses. 77
out of 985 patients failed to yield more than one FEV measurements so that
their measurements could not be used to calculate the FEV slopes. Table
2.1 summarizes the accumulated number of patients who yielded more than
one measurement, and the number of their measurements, up to each interim
analysis.

Table 2.1 Numbers of patients and measurements available at each
interim analysis. C = compressor nebulizer therapy, I = intermittent
positive pressure breath (IPPB) therapy.

Interim Group | Number of Number of
analysis [ C I patients | measurements
First 63 | 79 142 473
Second | 216 | 237 453 2002
Third | 415 | 428 843 4553
Fourth | 446 | 460 906 6964
Fifth | 448 | 460 908 8711

As discussed in section 3, under the null hypothesis that two rates of FEV

decline are equal, our test statistics (i}%‘%ll)-, e %) have an asymptoti-

cally multivariate normal distribution with mean 0 and covariance matrix I'.
The consistent estimate of T, say I' = (5w ))i1r=1,...5, 18

0.0206 0.0030 0.0015 0.0015 0.0017
0.0208 0.0068 0.0058 0.0055
0.0208 0.0118 0.0098

0.0208 0.0174

0.0208



Multivariate(linear) rank tests with missing data

This is enough to apply group sequential testing using Lan and DeMets
(1983). Let S(I) and b, | = 1,...,K, be the standardized test statistic
and the boundary value at I-th interim analysis, respectively. We reject the
null hypothesis and stop the trial at I-th interim analysis when IS > b
The boundaries (b;, . .., bs) = (4.1563, 3.2295, 2.6243, 2.3139, 2.1274) were cal-
culated recursively using the joint distribution of the sequentially computed
test statistics. The subroutine MULNOR, developed by Schervish (1984),
was used. All five interim analyses failed to reject the null hypothesis that
two FEV slopes are equal:

first :  |S(1)] = |L'”—'_’\-}47?_1/——W| = 0.6261 < 4.1735 = b,
second : |S(2)] = |%@| = 1.0767 < 3.2295 = b,
third : |S(3)| = |f%%{—m| = 0.6220 < 2.6257 = b,
fourth : |S(4)] = |%—m| = 0.5879 < 2.3165 = b,
fifth : |S(5)| = |%W5’| =0.1997 < 2.1289 = b,

The above result does not show any significant difference in the effects of
IPPB and compressor nebulizer treatment on changes of lung function, and
hence there is no benefit from early stopping of the trial. That is, IPPB
treatment is of no greater benefit than compressor nebulizer treatment.

5. REMARKS

We have provided a general theoretical justification for the application
of multivariate linear rank statistics in a wide variety of problems. Many
open questions related to their use remain. One concern is the small sample
accuracy of the asymptotic approximation suggested by this research, espe-
cially in the context of specific types of data and designs. The feasibility of
this approach for exact, small sample inference has been demonstrated by Re-
boussin (1992). For an example of multivariate data with missing values given
by Koziol et al.(1981), he generated a random sample of all possible complete
data rank matrices consistent with the observed data, and has shown some
preliminary results for small sample inference based on such samples. Further
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examples of data for which multivariate parametric models have been used
and multivariate nonparametric techniques could be applied, so that direct
comparisons can be made, are also of particular interest. In this paper, small
sample properties of our approach have not been considered and are a topic
for future research.

We have suggested that the missing data be considered missing at ran-
dom, since our results are valid in the situations if the data are missing at
random but not observed at random. For example, the probability of observ-
ing a nonmissing measurement may be larger in the treatment group than
in the control group. For this simple case, only the proportion of missing
observations differs by group. Both missingness and group membership are
indicated by the constants c;, the equi-probability of permutations is not af-
fected, so the distribution of L(obs) is not affected. This is equivalent to
having groups of unequal size. General guidelines for more involved missing
data mechanisms are a topic for future research.

We ignore ties throughout the discussion and we believe ties do not af-
fect the asymptotic result except for some adjustments. For the grouped or
discrete data, however, the probabilities of the different groups or cells de-
pend on the underlying F. This makes the distributions of the usual linear
rank statistics (even if adjusted for ties) dependent on the underlying F, and
hence these statistics are not generally distribution-free. Nevertheless, the
basic permutation invariance structure can be adapted in such a case, and
this enables us to develop some conditionally-free tests based on ranks of the
observations. More detailed background is given in Puri and Sen (1985, sec-
tion 8.5). In summary, we would not apply the proposed method to grouped
or discrete data without major modification.

Structured covariance matricies, which are quite useful in parametric ap-
proaches to analysis of longitudinal and repeated measures data, have never
been considered for multivariate linear rank statistics, even for complete data.
This is partly because the constraints induced on rank correlations by con-
straints on the underlying correlations are not easily determined. Thus, how
to impose such structure, and how much would be gained by doing so, is an
open question.
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APPENDIX
A. Proof of Theorem 3.1

We need the following lemmas to prove the theorem.
Lemma A.1. If X, ~ N,(EX,,V(X,)) and Var(X,; -Y,;)/Var(X,;) — 0
asu—»ooforevery1<g <p,then Y, ~ N,(EY,, V(X )) as v — oo.
The proof in the univariate case, i.e. p = 1, is given by Randles and Wolfe

(1979, page 74), and the multivariate extension is given by Puri and Sen
(1985, page 105).

Lemma A.2. Let ¢(-) denote a square integrable score function, and let R*
be the rank vector corresponding to Uy,...,Uy, a sample of i.i.d. uniform
(0,1) variates. Then

. 2
See Randles and Wolfe (1979, page 279), for a proof.

Let R = (R,,.. , Rn,) be the rank vector corresponding to Uy, ..., Uy,,
a sample of i.i.d. umform (0,1) variates. Suppose that (N — Ny) 4.i. d uni-
form (0,1) variates Uy,i1,Ungys, ..., Uy are added, and let R* — (R}, ...,
RY,--., R} ) be the rank vector corresponding toUy,...,Uy.

Lemma A.3. Let ¢(-) denote a square integrable score function. Then, for
2 .
all i = 1,...,No(< N), limy, o E [{¢ (N-H) ¢ (Ff)%—_l)} ] = 0 provided

oo

Proof.

e o () - (2]
=t 2 o () - e+ o000 ()]
= am. 5 [{e (755) - o0} |+ i 2 o0 - ()}
s2,0m 5 [{o (77) - o0} {so - ¢ (20 )]
1) -

<t [ ) oo - )

329
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+2 i, JE o (757) o} ] oo (5 i

0. (From Lemma A.2)

Asin§3,0;,j =1,...,p, is defined such that subject i,2 =1,...,N,isin
O; if and only if X;; is observed. Assume that we have N(j) observed values
among Xi;, X2;,- -+, XNj» and let cf’) be defined as

ORI R if i € O
i T )10 otherwise.

It follows that

Lt

(t5),.1., = (Faes (5)),,

= (Eieo,- P ¢; (w‘%)) + (Zwoj c¢; (%%3)
,=1,....,p'(j) j=1l...p

~ (Eieo,- cid; (—ﬁ%f;:——l)) . (From Lemma A.1& A.3)

(LN(j)’jjj::,l, ’ = L(obs).

ceP

vaey,

To show that L* = (L% ;). follows an asymptotically multivariate
N.j ji=l...p

normal distribution, we check the conditions of Theorem 5.4.2. of Puri and
Sen (1985). Without loss of generality, we can assume that equations (5.3.8)
- (5.3.10) of Puri and Sen (1985) hold. We further assume that for each j the
score function ¢;(u), satisfies the conditions of Theorem 5.4.1. of Puri and
Sen (1985), and v(F) is positive definite.

Then, by Theorem 5.4.2. of Puri and Sen (1985), under Ho : § = 0
and the permutation model Py, the p? x 1 vector Z = (Zf,...,Zf)T,
where Z; = ( A cfh)qu (Rﬁg))h = has an asymptotically multivariate

=1,...p
normal distribution.

Define the p x p? matrix B = [b;;] such that

g1 ifj=G—-1p+i
71 0 otherwise

It follows that L(obs) = (LN(l),l, LN(Q),g, N ,LN(p),p)T ~ (L;V,D *N,Z’ ey L*N,p)T
— BZ also has an asymptotically multivariate normal distribution with p x 1
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mean vector E(L(obs)|Py) = (N(j)E(j)q;j) ) where ¢(;) = ¥ic0, ¢i/N(j)

and ¢, = Yico, 9 (m) /N (j), and a covariance matrix I" = [V ar(L(obs)]
Pw)]

i=1,...,

pxp’

B. Outline of Extension

In Appendix A, we have used Theorem 5.4.2. of Puri and Sen (1985),
where ¢ = p, to get the asymptotic multivariate normality of p? x 1 vector
Z, and then defined p x p? matrix B and showed the asymptotic normality
of L{obs) = BZ.

For alli, j and h(=1...,q), we define

KON BT ifie oF
i(h) 0 if otherwise,

and let c; and C, in section 2, be redefined as ¢! and C*, respectively.

v = (D D m @ @ (») ® Y/
ci hand (C"(l)’ci(2)’ LR ’ci(q),ci(l),- .. ,Ci(q), * .. ,ci(l), .. ,Ci(q)) )
s0 C* =1L, (ef — &) (] — ).

In fact pg X pg matrix C* may not be of full rank. In that case, as
discussed in section 3, one may consider the corresponding minor of C* (of
order ¢’ x ¢'), which will be positive definite, and replace q by ¢' everywhere.
Hence, without any essential loss of generality, we can assume that C* and
V are positive definite.

() .
V(V;e use the fact that, for all j and A, Yieo, c,-(,,)qu(N—’(t]p‘)—ﬁ) =N, Cff;).)
¢(%IT)' Then, by Theorem 5.4.2. of Puri and Sen (1985), under Hj : B=0

T
and the permutation model Py, the p%q x 1 vector Z* = (Z;T, ey Z;T) ,

. k R .
where Z; = (Z?’:l cf(,z)qﬁk (m))hzl bt has an asymptotically mul-

=1,...,

tivariate normal distribution.
Define the pg x p?q matrix B* = [b};] such that

pr 4 1 if(p—1)g+1<i<pgandj=(p—1)pq+:i
] 0 otherwise

It follows that L(obs) = (LN(I),lh7LN(2),2h:- . .,LN(p),ph)T ~ B*Z* also has
an asymptotically multivariate normal distribution with pg x 1 mean vector
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E(L(obs)|Py) = (N(j)é(j,h)flgj)jzlmp’ h=1,..q where (;x) = Lico, ciny/N(5)

and d;j = Yico, 9 (m) /N (j), and a covariance matrix I'* = [Var( L(obs)
| Pw )]quM'

REFERENCES

(1) 1. P. P. B. Group (1983). Intermittent positive pressure breathing ther-

apy of chronic obstructive pulmonary disease, Annals of Internal Medi-
cine, 99, 615-620.

(2) Koziol, J. A. and Maxwell, D. A. (1982). A distribution free test for
paired growth curve analyses with application to an animal tumor im-
munotherapy experiment, Statistics in Medicine, 1, 83-89.

( 3) Koziol, J. A., Maxwell, D. A., Fukushima, M., Colmerauer, M. E.M. and
Pilch, Y.H. (1981). A distribution free test for tumor-growth curve anal-
yses with application to an animal tumor immunotherapy experiment,
Biometrics, 37, 383-390.

(4) Lan, G. K. K. and DeMets, D. L. (1983). Discrete sequential boundaries
for clinical trials, Biometrika, 70, 659-663.

( 5) Lee, J. W. and DeMets, D. L. (1992). Sequential rank tests with repeated
measurements in clinical trials, Journal of the American Statistical As-
sociation, 87, 136-142.

(6) Puri, M. L. and Sen, P. K. (1985). Nonparametric Methods in General
Linear Models, John Wiley & Sons, New York.

( 7) Randles, R. H. and Wolfe, D. A. (1979). Introduction to the theory of
nonparametric statistics, John Wiley & Sons, New York.

( 8) Reboussin, D. M. (1992). Exact Inference for Multivariate Linear Rank
Statistics on Complete and Incomplete Data, Unpublished Ph.D. dis-
sertation, Department of Statistics, University of Wisconsin-Madison.

( 9) Schervish, M. J. (1984). Multivariate normal probabilities with error
bound (with corrections in 1985), Applied Statistics, 33, 81-94.

(10) Servy, E. C. and Sen, P. K. (1987). Missing variables in multi-sample
rank permutation tests for MANOVA and MANOCOVA, Sankhya Se-
ries A, 49, 78-95.



