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LINEAR PRESERVERS OF BOOLEAN RANK BETWEEN

DIFFERENT MATRIX SPACES

LeRoy B. Beasley, Kyung-Tae Kang, and Seok-Zun Song

Abstract. The Boolean rank of a nonzero m × n Boolean matrix A is
the least integer k such that there are an m× k Boolean matrix B and a
k × n Boolean matrix C with A = BC. We investigate the structure of
linear transformations T : Mm,n → Mp,q which preserve Boolean rank.
We also show that if a linear transformation preserves the set of Boolean
rank 1 matrices and the set of Boolean rank k matrices for any k, 2 ≤ k ≤
min{m,n} (or if T strongly preserves the set of Boolean rank 1 matrices),
then T preserves all Boolean ranks.

1. Introduction

In 1897, Frobenius initiated the study of linear preservers when he investi-
gated linear operators on the space of square matrices that preserve the de-
terminant [5]. He found that if T leaves the determinant function invariant,
then for some fixed nonsingular matrices U and V such that detUV = 1,
T (X) = UXV for any matrix X . Since that time, a lot of effort has gone into
investigations of linear operators that leave various functions, sets or relations
invariant. In 1959, Marcus and Moyls [8] studied rank preservers and rank 1
preservers. They showed that if the matrices are over an algebraically closed
field of characteristic 0, then rank preservers or preservers of the set of rank 1
matrices are of the form T (X) = UXV for some fixed nonsingular matrices U
and V , or T (X) = UXtV for some fixed nonsingular matrices U and V .

The study of preserver problems between different matrix spaces (or tensor
spaces) over fields began in 1967 with Westwick [9] investigating the preservers
of decomposable tensors (rank one matrices). This was continued in 1975 by
Lim [7] and more recently by Li, Rodman and Šemrl [6] investigating rank k
preservers and preservers of matrices of rank at most k. The characterizations
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that they give for such preservers over fields are very similar to those in our
Theorem 5.1.

Beasley and his colleagues ([1]-[3]) have investigated the linear operators
that preserve Boolean rank of a Boolean matrix. Recently, Beasley and Song
obtained characterizations of the linear transformations that preserve term rank
between different matrix spaces over semirings containing the binary Boolean
semiring in [4]. These characterizations show that the forms of linear preservers
are more complicated than forms of linear preservers between the same matrix
spaces.

In this paper we investigate Boolean linear transformations T : Mm,n →
Mp,q that preserve Boolean rank between different matrix spaces. We show
that a Boolean linear transformation T : Mm,n → Mp,q preserves Boolean
rank if and only if it preserves Boolean ranks 1 and k for any k with 2 ≤
k ≤ min{m,n}. We also obtain forms of Boolean linear transformations that
preserve Boolean rank between different matrix spaces.

2. Preliminaries

The binary Boolean semiring consists of the set B = {0, 1} equipped with
two binary operations, addition and multiplication. The operations are defined
as usual except that 1 + 1 = 1.

Let Mm,n denote the set of all m × n Boolean matrices, that is, the set
of m × n matrices with entries in B. The usual definitions for adding and
multiplying matrices apply to Boolean matrices as well. From now on, we
assume that 1 ≤ m ≤ n.

The Boolean rank, b(A), of nonzero A ∈ Mm,n is the least integer k such
that there are Boolean matrices B ∈ Mm,k and C ∈ Mk,n with A = BC. It
follows that 1 ≤ b(A) ≤ m for all nonzero A ∈ Mm,n. The Boolean rank of the
zero Boolean matrix O is 0. A Boolean rank 1 matrix is of the form xyt for
nonzero vectors x and y. It is easily seen that if A has Boolean rank k, then
A is the sum of k matrices of Boolean rank 1.

A mapping T : Mm,n → Mp,q is called a Boolean linear transformation if
T (αA+ βB) = αT (A) + βT (B) for all A,B ∈ Mm,n and for all α, β ∈ B.

Let 1 ≤ k ≤ m. For a Boolean linear transformation T : Mm,n → Mp,q, we
say that

(1) T preserves Boolean rank k if b(T (X)) = k whenever b(X) = k for all
X ;

(2) T strongly preserves Boolean rank k provided that b(T (X)) = k if and
only if b(X) = k for all X ;

(3) T preserves Boolean rank if it preserves Boolean rank k for all k ∈
{1, . . . ,m}.

Further, T is nonsingular if and only if T (X) = O implies that X = O. Note
that over semirings, a linear transformation may be nonsingular but not be
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invertible. For example, if T (X) = A for some fixed nonzero A and for all
X ∈ Mm,n, then T is nonsingular, but not invertible.

The matrix Jm,n is the m × n Boolean matrix all of whose entries are 1.
When n = 1 the matrix Jm,1 is thought of as a vector and is written jm. A
matrix in Mm,n is called a cell if it has exactly one 1 entry. We denote the cell
whose one 1 entry is in the (i, j)th position by Ei,j . Further we let Em,n be the
set of all cells in Mm,n. That is, Em,n = {Ei,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. For
sets G and H , G \H = {x ∈ G : x /∈ H} so that H ⊆ G is not required.

If A and B are matrices in Mm,n, we say that A dominates B (written B ⊑ A
or A ⊒ B) if ai,j = 0 implies bi,j = 0 for all i and j. This provides a reflexive,
antisymmetric and transitive relation on Mm,n. For matrices A and B in Mm,n

with B ⊑ A, we define A \B to be the matrix C such that ci,j = 1 if and only
if ai,j = 1 and bi,j = 0 for all i and j. Further, Ri =

∑n

l=1 Ei,l is the ith (full)

row matrix and Cj =
∑m

s=1 Es,j is the jth (full) column matrix. In particular,
Jm,n \Ri is the matrix with zeros in the ith row and 1’s elsewhere.

We shall use the notation [[1, ℓ]] to denote the set {1, 2, . . . , ℓ}. In the follow-
ing we use “rank” and “linear transformation” instead of “Boolean rank” and
“Boolean linear transformation”, respectively.

3. Preservers of rank 1

Recall that a mapping f is nonsingular if and only if f(X) = O implies that
X = O. For m = 1 we observe the following:

Theorem 3.1. Let L : M1,n → Mp,q be a mapping. Then L preserves rank 1 if

and only if there exist nonsingular mappings f : M1,n → Mp,1 and g : M1,n →
M1,q such that L(X) = f(X)g(X) for all X ∈ M1,n.

Proof. If L preserves rank 1, then each element in the image is rank 1 and
hence can be factored as an outer product of vectors, i.e., L(X) = u(X)v(X)t.
Letting f(X) = u(X) and g(X) = v(X)t defines the needed mappings. The
converse is obvious. �

One may observe by the above theorem that if T : M1,n → Mp,q is any linear
transformation that preserves rank 1, then the image of T must be a rank 1
space. In [1, Theorem 5.1] there is a classification of all rank 1 subspaces
of Mp,q. However, here, the dimension of the subspace can be at most n.
Thus, a rank 1 preserver T : M1,n → Mp,q can be classified as any linear
transformation whose image is one of those subspaces of dimension at most n.
Below in Theorem 3.4 we give a constructive characterization. We first need
some definitions and results from [1].

Let A = uvt be a rank 1 matrix. The perimeter of A, p(A), is k where k
is the number of nonzero entries in u plus the number of nonzero entries in v.
Two rank 1 matrices, A and B, have a common left factor if there are vectors
u,x and y such that A = uxt and B = uyt. They have a common right factor
if there are vectors v,x and y such that A = xvt and B = yvt. Further we
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say that they have a common factor if they have either a common right factor
or a common left factor.

Lemma 3.2 ([1, Lemma 2.6.1]). If A ⊑ B and b(A) = b(B) = 1, then p(A) <
p(B) unless A = B.

Lemma 3.3 ([1, Lemma 2.6.2]). If A, B and A +B are rank 1 matrices and

neither A ⊑ B nor B ⊑ A, then A, B and A+B have a common factor.

Note that any nonsingular linear transformation T : Mm,n → Mp,q preserves
rank 1 if min{p, q} = 1. The case of m = 1 is characterized in:

Theorem 3.4. Let T : M1,n → Mp,q be a linear transformation. Then T
preserves rank 1 if and only if for some r ≤ n, there exists an ordered partition

(F1, . . . , Fr) of [[1, n]], together with two ordered, pairwise disjoint sets of indices,

(I1, . . . , Ir) of [[1, p]] and (J1, . . . , Jr) of [[1, q]] such that for all k ∈ [[1, r]], either

• there is a cover {Ak,i : i ∈ Fk} of subsets of Ik such that for all i ∈ Fk,

T (E1,i) =
∑

s∈I1∪···∪Ik−1∪Ak,i

∑

t∈J1∪···∪Jk

Es,t

or

• there is a cover {Bk,i : i ∈ Fk} of subsets of Jk such that for all i ∈ Fk,

T (E1,i) =
∑

s∈I1∪···∪Ik

∑

t∈J1∪···∪Jk−1∪Bk,i

Es,t.

Proof. A routine examination shows that the image of T defined in either case
contains only O and rank 1 matrices. Thus T preserves rank 1.

To prove the direct implication, we proceed by induction on n. If n = 1
or n = 2, the theorem is easily verified. Assume the conclusion holds for any
k < n. For each i = 1, . . . , n, let T (E1,i) = Mi. Choose i0 such that Mi0 has
minimum perimeter, and let Mi0 = uvt be a rank 1 factorization of Mi0 . By
permuting we may assume without loss of generality that u1 = v1 = 1. For
each i 6= i0, either Mi ⊒ Mi0 or Mi and Mi0 have a common factor. Suppose
that there exist i and j such that Mi 6⊑ Mi0 and Mi and Mi0 have a common
left factor, and Mj 6⊑ Mi0 and Mj and Mi0 have a common right factor. Then
for some fixed x and y, such that Mi = uxt and Mj = yvt, there is some k
such that uk = 0 and yk = 1 and some ℓ such that vℓ = 0 and xℓ = 1. Thus,
the submatrix of Mi0 +Mi+Mj on rows 1 and k and columns 1 and ℓ is [ 1 1

1 0 ].
Thus, the rank of Mi0 +Mi+Mj is at least 2, a contradiction. Hence there are
two possibilities: for all i 6= i0, if Mi 6⊒ Mi0 , then Mi and Mi0 have a common
left factor; or, for all i 6= i0, if Mi 6⊒ Mi0 , then Mi and Mi0 have a common
right factor. We will assume only the first as the second case has a parallel
argument.

Let F1 = {i ∈ [[1, n]] : Mi = uxt for some vector x}. For each i ∈ F1, let

Mi = ux(i)t where x(i)t = (x
(i)
1 , . . . , x

(i)
q ), and let A1,i = {j : x

(i)
j = 1}. Let

J1 = ∪i∈F1A1,i and I1 = {i : ui = 1}.
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Let G = [[1, n]]\F1. By permuting we may assume that G = {1, . . . , k} where

F1 has n− k indices in [[1, n]]. Let M̂ = M1,k, so that Â represents a matrix in

M̂. Define T̂ : M̂ → Mp,q by T̂ (X̂) = T ([X̂, O1,n−k]). Then T̂ : M1,k → Mp,q is
linear and preserves rank 1. So, by induction, for some 2 ≤ r ≤ n, there exists
an ordered partition (F2, . . . , Fr) of G, together with two ordered, pairwise

disjoint sets of indices, (Î2, . . . , Îr) of [[1, p]] and (Ĵ2, . . . , Ĵr) of [[1, q]] such that
for all k ∈ [[2, r]], either

• there is a cover {Âk,i : i ∈ Fk} of subsets of Îk such that for all i ∈ Fk,

T̂ (Ê1,i) =
∑

s∈Î2∪···∪Îk−1∪Âk,i

∑

t∈Ĵ2∪···∪Ĵk

Es,t

or
• there is a cover {B̂k,i : i ∈ Fk} of subsets of Ĵk such that for all i ∈ Fk,

T̂ (Ê1,i) =
∑

s∈Î2∪···∪Îk

∑

t∈Ĵ2∪···∪Ĵk−1∪B̂k,i

Es,t.

Let M0 =
∑

i∈F1
Mi. Since for each j ∈ Fk with k ≥ 2, Mj ⊐ Mi0 , thus, the

left factor of Mj strictly dominates u by the definition of F1. Further, either
Mj ⊒ M0 or Mj and M0 have a common factor (it must be the right factor).
Thus, Mj ⊒ M0 for all j ∈ [[1, k]].

For ℓ = 2, . . . , r, let Iℓ = Îℓ \ I1, Aℓ,i = Âℓ,i \ I1, Jℓ = Ĵℓ \ J1 and Bℓ,i =

B̂ℓ,i \ J1. The theorem then follows. �

We end this section with a lemma about strong preservers of rank 1.

Lemma 3.5. Let 2 ≤ m ≤ n. If T : Mm,n → Mp,q is a linear transformation

that strongly preserves rank 1, then T preserves rank 2.

Proof. Let A be an arbitrary matrix in Mm,n with b(A) = 2. Then we have that
A = B+C with rank 1 matrices B and C in Mm,n. Thus T (A) = T (B)+T (C)
has rank 1 or 2. But T strongly preserves rank 1 and hence T (A) cannot be
rank 1. Thus b(T (A)) = 2. Since A is an arbitrary matrix of rank 2, the result
follows. �

4. Preservers of ranks 1 and k

In this section, we consider linear transformations T : Mm,n → Mp,q that
preserve ranks 1 and k and we obtain lemmas needed to prove the main theorem
in the next section.

If A is a Boolean matrix and α is a set of rows and β is a set of columns,
then A[α|β] is the Boolean matrix obtained from A by deleting all rows not in
α and all columns not in β. Further the transpose of A is denoted by At.

Hereafter, we assume that 2 ≤ k ≤ m ≤ n. We begin by proving a crucial
lemma.
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Lemma 4.1. Suppose that T : Mm,n → Mp,q is a linear transformation, T
preserves ranks 1 and k, and T (Jm,n) = Jp,q. Then there are permutation

matrices P and Q of orders p and q, respectively, such that

(PT (X)Q)[1, . . . ,m|1, . . . , n] = X

for all X ∈ Mm,n, or

(PT (X)Q)[1, . . . , n|1, . . . ,m] = Xt

for all X ∈ Mm,n.

Proof. We will divide the proof into four preliminary steps before the final
argument.

Step 1. For any line matrix (a row matrix or a column matrix) L, we have
that T (L) has no zero row or no zero column but not both.

Proof of Step 1. First, suppose that for some line matrix L, say L = R1 or
L = C1, T (L) has neither a zero row nor a zero column. Then we must have that
T (L) = Jp,q since T preserves rank 1. But then T (L+E2,2+ · · ·+Ek,k) = Jp,q,
a contradiction since T preserves rank k and L+E2,2 + · · ·+Ek,k has rank k.
Thus the image of every line matrix has either a zero row or a zero column.

Next, suppose that the image of some line matrix L1, say L1 = R1 or
L1 = C1, has both a zero row and a zero column. Then, by permuting, we may
assume that T (L1) =

[
Jr,s O

O O

]
for some r < p and s < q. Since T (Jm,n) = Jp,q

there is some cell Ei,j whose image dominates Ep,q. By permuting we may
assume that i = 2 or j = 2 according as L1 = R1 or L1 = C1. Let L2 = R2 or
L2 = C2 according as L1 = R1 or L1 = C1. But then we must have that T (L2)
dominates 


Jr,s O jr
O O O
js

t O 1


 .

Otherwise, T (L1 + L2) would have rank 2. But then T (E1,1 + L2) = T (L2) is
a rank one matrix. Thus we have a contradiction for the case of k = 2, m = 2
or n = 2. Hence we assume that 3 ≤ k ≤ m ≤ n. Now, T (E1,1 + L2 + E3,3 +
· · ·+ Ek,k) = T (E1,1 + L2) + T (E3,3) + · · ·+ T (Ek,k) is the sum of k − 1 rank
one matrices. Thus T (E1,1 +L2 +E3,3 + · · ·+Ek,k) has rank at most k − 1, a
contradiction since E1,1 + L2 + E3,3 + · · ·+ Ek,k has rank k.

It follows that the image of any line matrix has no zero row or no zero
column, but not both. �

Henceforth, we assume without loss of generality that T (R1) has a zero row
but no zero column.

Step 2. The image of any row matrix has a zero row but no zero column and
the image of any column matrix has a zero column and no zero row.
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Proof of Step 2. If for some i 6= 1, T (Ri) has a zero column, then T (Ri) has no
zero row by Step 1. Since T (R1) has a zero row but no zero column, T (R1+Ri)
must have rank 2, a contradiction. Hence the image of any row matrix has a
zero row but no zero column.

Suppose that the image of some column matrix has no zero column. Without
loss of generality we may assume that T (C1) has no zero column. By Step 1,
since T (R1) and T (C1) are rank 1, every nonzero row of T (R1) and every
nonzero row of T (C1) consists entirely of ones. But then, T (R1 + C1) is also
rank 1. Now, T preserves rank 1 so that T (R1 + C1 + E3,3 + · · · + Ek,k) =
T (R1 + C1) + T (E3,3) + · · ·+ T (Ek,k) has rank at most k − 1, a contradiction
since R1 + C1 + E3,3 + · · ·+ Ek,k has rank k. Hence the image of any column
matrix has a zero column and no zero row. �

In the following we shall use the notation Ĉj =
∑n

k=j Ek,j . Thus, Ĉ1 = C1,

Ĉ2 = C2 \ E1,2, Ĉ3 = C3 \ (E1,3 + E2,3), etc.

Step 3. For i = 1, . . . ,m, T (Jm,n \ Ri) has a zero row and no zero column,
and for j = 1, . . . , n, T (Jm,n \ Cj) has a zero column and no zero row.

Proof of Step 3. Since the column case is parallel to the row case, we only
consider the row case. Since b(Jm,n \Ri) = 1 and T preserves rank 1, we have
that b(T (Jm,n \ Ri)) = 1. If we choose an index i′ in {1, . . . ,m} \ {i}, then
T (Jm,n \Ri) dominates T (Ri′). Since, by Step 2, T (Ri′) has no zero column,
T (Jm,n \ Ri) has no zero column. Thus, by permuting, we may assume that

T (Jm,n \ Ri) =
[
Jr,q

O

]
for some r ≤ p. Without loss of generality, we assume

that i = 1 and hence T (Jm,n \R1) =
[
Jr,q

O

]
. Now we will show that r < p.

Suppose that T (C1 \E1,1) has no zero row. Then, by Step 2, T ((C1 \E1,1)+
C2) is a sum of full column matrices and hence T ((C1 \E1,1)+C2) has rank 1.

But then T ((C1\E1,1)+C2+Ĉ3+· · ·+Ĉk) = T ((C1\E1,1)+C2)+T (Ĉ3)+· · ·+

T (Ĉk) must have rank at most k− 1 while (C1 \E1,1)+C2 + Ĉ3+ · · ·+ Ĉk has
rank k, a contradiction to the fact that T preserves rank k. Thus T (C1 \E1,1)
must have a zero row.

Now, suppose that T (C1 \ E1,1) ⊑ T (Cj \ E1,j) for some j ≥ 2. Without
loss of generality, we assume that j = 2. Then T (C1 \E1,1) ⊑ T (C2) and hence

T ((C1 \E1,1)+C2+ Ĉ3+ · · ·+ Ĉk) = T (C2+ Ĉ3+ · · ·+ Ĉk) = T (C2)+T (Ĉ3)+

· · ·+T (Ĉk). But the rank of T (C2+Ĉ3+· · ·+Ĉk) = T (C2)+T (Ĉ3)+· · ·+T (Ĉk)
is at most k − 1 since T preserves rank 1, while the rank of (C1 \E1,1) +C2 +

Ĉ3 + · · · + Ĉk, and hence its image, is k, a contradiction. Thus, T (C1 \ E1,1)
is not dominated by T (Cj \ E1,j) for all j ≥ 2. That is, there is some nonzero
column of T (C1 \ E1,1) that is not dominated by T (Cj \ E1,j). Thus, since
(C1 \ E1,1) + (Cj \ E1,j) is rank 1, every zero row of T (C1 \ E1,1) is a zero
row of T (Cj \ E1,j). Since T (Jm,n \ R1) =

∑n
k=1 T (Ck \ E1,k), it follows that

T (Jm,n \ R1) has a row of zeros. Therefore we conclude that r < p. Thus, for
i = 1, . . . ,m, T (Jm,n \Ri) has a zero row and no zero column. �
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Step 4. m ≤ p, n ≤ q and there exist permutation matrices P of order p and
Q of order q such that for each ℓ = 1, . . . ,m, PT (Jm,n \Rℓ) has a zero ℓth row,
and for each j = 1, . . . , n, T (Jm,n \Rj)Q has a zero jth column.

Proof of Step 4. By Step 3, T (Jm,n \Rℓ) has a zero row for each ℓ = 1, . . . ,m.
Now, suppose that T (Jm,n \Rj) and T (Jm,n \Rℓ) have a common zero row for
some j 6= ℓ. Then T (Jm,n) = T (Jm,n \ Rj) + T (Jm,n \ Rℓ) must have a zero
row, a contradiction since T (Jm,n \ Rj + Jm,n \ Rℓ) = T (Jm,n) = Jp,q. Thus
T (Jm,n \ Rj) and T (Jm,n \ Rℓ) cannot have a common zero row for all j 6= ℓ.
This shows that T (Jm,n \Ri) defines a distinct zero row for each i = 1, . . . ,m.
Thus we must have that p ≥ m. Using a parallel argument, q ≥ n.

We now define a mapping fo : {1, . . . ,m} → {1, . . . , p} by fo(ℓ) = j if and
only if the first zero row in T (Jm,n \Rℓ) is the j

th. From the above paragraph,
fo(ℓ) is distinct from fo(j) unless j = ℓ so that fo is injective. Extend fo to
f : {1, . . . , p} → {1, . . . , p} in any way so that f is a bijection. Let P = [pi,j ]
be the permutation matrix defined by pi,j = δf(i),j where δ is the Kronecker

delta. Then the ℓth row of PT (Jm,n \Rℓ) has all zero entries. The column case
is parallel. �

Note that m ≤ p and n ≤ q by Step 4 and that the ith row of PT (Ri)Q
is all ones and the jth column of PT (Cj)Q is all ones. Further, that the only
rows with nonzero entries in PT (Ri)Q are the ith and rows numbered bigger
than m and the only columns with nonzero entries in PT (Cj)Q are the jth

and columns numbered bigger than n. Since Ei,j lies in the intersection of the
ith row and jth column, the nonzero entries of PT (Ei,j)Q must be dominated
by both PT (Ri)Q and PT (Cj)Q. Thus, the nonzero entries of PT (Ei,j)Q lie
only in the intersection of the ith row and rows numbered bigger than m and
the jth column and columns numbered bigger than n. That is, we have that
(PT (Ei,j)Q)[1, . . . ,m|1, . . . , n] = Ei,j since Jp,q = T (Jm,n) =

∑
i,j T (Ei,j).

Hence, (PT (X)Q)[1, . . . ,m|1, . . . , n] = X for all X ∈ Mm,n.
Had we assumed before Step 2 that T (R1) has a zero column but no zero

row, we would conclude that (PT (X)Q)[1, . . . , n|1, . . . ,m] = Xt. �

To illustrate the above lemma, we give the following example:

Example 4.2. Define a transformation T : M3,4 → M5,6 by

T (X) =

[
I3
V

]
X

[
I4 U

]
=

[
X XU
VX VXU

]

for all X ∈ M3,4, where V = [ 1 1 0
0 1 1 ] ∈ M2,3 and U =

[
0 0
0 1
1 0
0 0

]
∈ M4,2. Then for

any X =
[ x1,1 x1,2 x1,3 x1,4
x2,1 x2,2 x2,3 x2,4
x3,1 x3,2 x3,3 x3,4

]
∈ M3,4, we have that T (X) becomes:
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


x1,1 x1,2 x1,3 x1,4 x1,3 x1,2

x2,1 x2,2 x2,3 x2,4 x2,3 x2,2

x3,1 x3,2 x3,3 x3,4 x3,3 x3,2

x1,1 + x2,1 x1,2 + x2,2 x1,3 + x2,3 x1,4 + x2,4 x1,3 + x2,3 x1,2 + x2,2

x2,1 + x3,1 x2,2 + x3,2 x2,3 + x3,3 x2,4 + x3,4 x2,3 + x3,3 x2,2 + x3,2



.

Notice that T (J3,4) = J5,6. Further T preserves the rank of any matrix in
M3,4 (see Theorem 5.1 in the next section).

For a matrix X ∈ Mm,n, define X(i) to be the ith row of X , and X(j) to be

the jth column of X . Let er,i denote the column vector of size r, whose ith

entry equals one, and the others are zero. Then etr,i is a row vector of size r

with one 1 in the ith entry.

Lemma 4.3. Suppose that T : Mm,n → Mp,q is a linear transformation that

preserves rank 1. If T (X) =
[

X B(X)
C(X) D(X)

]
, where B(X) ∈ Mm,q−n, C(X) ∈

Mp−m,n and D(X) ∈ Mp−m,q−n are matrices dependent on X, then there are

matrices U ∈ Mn,q−n and V ∈ Mp−m,m such that

B(X) = XU, C(X) = V X and D(X) = V XU.

Proof. Define a matrix U ∈ Mn,q−n by U (i) = T (E1,i)[1|n + 1, . . . , q] for i =
1, . . . , n, and a matrix V ∈ Mp−m,m by V(j) = T (Ej,1)[m + 1, . . . , p|1] for
j = 1, . . . ,m.

Now, the ith row of T (Ei,j) is
[
etn,j xt

]
for some column vector x of size q−

n, and the first row of T (E1,j) is
[
etn,j U (j)

]
. Since T (E1,j+Ei,j) must be rank

1, we must have that xt = U (j). It now follows that T (Ei,j)[1, . . . ,m|1, . . . , q] =[
Ei,j Ei,jU

]
. Similarly, the jth column of T (Ei,j) is

[
em,i

y

]
for some col-

umn vector y of size p −m, and the first column of T (E1,j) is
[
em,i

V(i)

]
. Since

T (Ei,1+Ei,j) must be rank 1, we must have that y = V(i). It now follows that

T (Ei,j)[1, . . . , q|1, . . . , n] =
[

Ei,j

V Ei,j

]
.

Now, since T (Ei,j) has rank 1, if a row of D(Ei,j) is nonzero, it must be
identical to the nonzero row in Ei,jU , and if a column of D(Ei,j) is nonzero, it
must be identical to the nonzero column of V Ei,j . But then, D(Ei,j) = V Ei,jU .

That is T (Ei,j) =
[

Ei,j Ei,jU

V Ei,j V Ei,jU

]
for each i = 1, . . . ,m and j = 1, . . . , n.

Let X ∈ Mm,n. Then X =
∑m

i=1

∑n
j=1 xi,jEi,j , so that by the linearity of

T , we have

T (X) = T




m∑

i=1

n∑

j=1

xi,jEi,j


 =

[
X XU
VX VXU

]
.

Hence the result follows. �
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The number of nonzero entries of a matrix X is denoted by ♯(X). Notice
that if r ≤ p and P is a matrix in Mp,r with ♯(P ) = b(P ) = r, then there
are permutation matrices P1 and P2 of orders p and r, respectively, such that
P = P1

[
P2

O

]
.

Theorem 4.4. Let 2 ≤ k ≤ m ≤ n and T : Mm,n → Mp,q be a linear

transformation. Then if T preserves ranks 1 and k, then either

(1) p ≥ m and q ≥ n, and for some r, s with m ≤ r ≤ p and n ≤ s ≤ q,
there are matrices P ∈ Mp,r and Q ∈ Ms,q with ♯(P ) = b(P ) = r and

♯(Q) = b(Q) = s, such that for some fixed matrices V ∈ Mr−m,m and

U ∈ Mn,s−n,

T (X) = P

[
X XU
VX VXU

]
Q

for all X ∈ Mm,n; or
(2) q ≥ m and p ≥ n, and for some r, s with n ≤ r ≤ p and m ≤ s ≤ q,

there are matrices P ∈ Mp,r and Q ∈ Ms,q with ♯(P ) = b(P ) = r and

♯(Q) = b(Q) = s, such that for some fixed matrices V ∈ Mr−n,n and

U ∈ Mm,s−m,

T (X) = P

[
Xt XtU
V Xt V XtU

]
Q

for all X ∈ Mm,n.

Proof. Since T preserves rank 1, there are permutation matrices P1 and Q1 of
orders p and q, respectively, such that T (Jm,n) = P1

[
Jr,s O

O O

]
Q1 for some r and

s. Let Tα : Mm,n → Mr,s be defined by

Tα(X) = (P−1
1 T (X)Q−1

1 )[1, . . . , r|1, . . . , s],

so that Tα preserves rank 1 and rank k and Tα(Jm,n) = Jr,s. By Lemma 4.1,
Tα(Jm,n \Ri) has either a zero row or a zero column for all i = 1, . . . ,m.

Case 1. Suppose that Tα(Jm,n \ Ri) has a zero row for some i. By Lemma
4.1, m ≤ r ≤ p, n ≤ s ≤ q, and there are permutation matrices P2 and Q2

of orders r and s, respectively, such that (P−1
2 Tα(X)Q−1

2 )[1, . . . ,m|1, . . . , n] =

X , so that Tα(X) = P2

[
X B(X)

C(X) D(X)

]
Q2 for some matrices B(X) ∈ Mm,s−n,

C(X) ∈ Mr−m,n and D(X) ∈ Mr−m,s−n which depend upon X . By Lemma

4.3, there are matrices U ∈ Mn,s−n and V ∈ Mr−m,m such that
[

X B(X)
C(X) D(X)

]
=

[ X XU
VX V XU ]. Thus, we have that

T (X) = P1

[
Tα(X) O

O O

]
Q1

= P1

[
Ir
O

]
Tα(X)

[
Is O

]
Q1

= P1

[
Ir
O

]
P2

[
X XU
VX VXU

]
Q2

[
Is O

]
Q1
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= P1

[
P2

O

] [
X XU
VX VXU

] [
Q2 O

]
Q1.

Letting P = P1

[
P2

O

]
and Q =

[
Q2 O

]
Q1, we have arrived at conclusion (1).

Case 2. Suppose that Tα(Jm,n \Ri) has a zero column for some i. Following
a parallel argument to that of Case 1 above, we arrive at conclusion (2). �

Corollary 4.5. Let 2 ≤ k ≤ m ≤ n and T : Mm,n → Mp,q be a linear

transformation. If T preserves ranks 1 and k, then T preserves rank.

Proof. The structure of T from the above lemma gives that T preserves all
ranks. �

5. The main theorem

Theorem 5.1. Let 2 ≤ k ≤ m ≤ n and T : Mm,n → Mp,q be a linear

transformation. The following conditions are equivalent:

(i) T preserves rank;
(ii) T strongly preserves rank 1;
(iii) T preserves ranks 1 and k;
(iv) T satisfies

(1) p ≥ m and q ≥ n, and for some r, s with m ≤ r ≤ p and n ≤ s ≤ q,
there are matrices P ∈ Mp,r and Q ∈ Ms,q with ♯(P ) = b(P ) = r
and ♯(Q) = b(Q) = s, such that for some fixed matrices V ∈
Mr−m,m and U ∈ Mn,s−n,

T (X) = P

[
X XU
VX VXU

]
Q

for all X ∈ Mm,n; or
(2) q ≥ m and p ≥ n, and for some r, s with n ≤ r ≤ p and m ≤ s ≤ q,

there are matrices P ∈ Mp,r and Q ∈ Ms,q with ♯(P ) = b(P ) = r
and ♯(Q) = b(Q) = s, such that for some fixed matrices V ∈
Mr−n,n and U ∈ Mm,s−m,

T (X) = P

[
Xt XtU
V Xt V XtU

]
Q

for all X ∈ Mm,n.

Proof. It is obvious that (i) implies (ii), and (iv) implies (i). Further, (iii)
implies (iv) by Lemma 4.4. Suppose that T strongly preserves rank 1. Then
T preserves rank 2 by Lemma 3.5. By Corollary 4.5, for k = 2 we have that T
preserves all ranks. Thus (ii) implies (iii). �

Thus, we have characterized Boolean linear transformations that preserve
Boolean rank between different matrix spaces. These characterizations extend
those of the linear operators that preserve Boolean rank between the same
Boolean matrix space.
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