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Hypothesis Testing for New Scores
in a Linear Model 1V

Young Hun Choi 2)

Abstract

In this paper we introduced a new score generating function for the rank dispersion
function in a general linear model. Based on the new score function, we derived the
null asymptotic theory of the rank-based hypothesis testing in a linear model.

In essence we showed that several rank test statistics, which are primarily focused
on our new score generating function and new dispersion function, are mainly
distribution free and asymptotically converges to a chi-square distribution.
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1. Introduction

Since Jureckova(1971) and Jaeckel(1972) defined the dispersion function, considerable work
on the rank based estimates as a robust alternatives to least squares has been done for the
linear regression model. Recently Ozturk and Hettmansperger(1996) and Ozturk(1999) derived
the robust estimates of location and scale parameters from minimizing a minimum distance
criterion function.

Meanwhile Ahmad(1996) developed a new class of Mann-Whitney-Wilcoxon type test
statistics with the right tail probabilities. Ozturk and Hettmansperger(1997) and Choi(1998)
considered the distribution functions reflecting both right and left tail probabilities.
Ozturk(2001) considered another class of Mann-Whitney-Wilcoxon test statistics with having
both right and left tail distributions. Further Choi and Ozturk(2002) introduced a new score
generating function for the rank dispersion function in a multiple linear regression model.
The score function compares the #’'th and s'th power of the tail probabilities of the
underlying probability distribution, which improved the efficiency for many distributions.

Now the main purpose of this paper is to extend the Hettmansperger and McKean(1998)
and Choi and Ozturk(2002)’s concept to the problem of hypothesis testing in a linear model.

In Section 2, we propose our score function based on the #’th and s’'th power in
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considering both right and left tail probabilities. We show the dispersion function D, ((8)

based on our score function. In Section 3, we concentrate on hypothesis testing of 8 based
on our score function. We derive the rank-based test statistics which are mostly distribution
free and asymptotically converge to a chi-square distribution.

2. Notation and Assumptions

Consider the linear regression model , y;, = a+ x;~,6’+ e;, i1=1,,n, where x; and B
are pX 1 vectors of explanatory variables and unknown regression parameters respectively
and e; is a random variable with density f and distribution function F'.

Jaeckel’s(1972) general rank dispersion function can be defined as
D) = 3 (5= %8 al R(yi = x8)]

where a set of scores is generated by a(i) = ¢(i/(n+1)), the score generating function

¢(u) is defined on (0,1) and is nondecreasing, bounded and square-integrable.

We require the following assumptions:
(H1) : £ is absolutely continuous and f > 0.
(H2) : scores are generated as a(i) = ¢(i/(n+1)) where ¢ is defined on (0,1),

nondecreasing, bounded and satisfies the conditions f§ #(u)du =0
and [ ¢°(u)du = 1.
(H3) © lim #7 !X X =3 >0, where X is a # X p matrix with 7 th row x; .

n-— o

1 1

_ 1 r_ — (1= )¢
Now let ¢(u) = V_C;)Ts' [u T+ 1 1—u) + s+1 |

N 1 Y | _ R S 1
a(i) = \/a),,s [(n+1) r+1 (1 n+1) + s+1 ] (1)
where W, = i + s + 2 -9 I'(r+ 1) IC(s+1) )
ST @+ D(r+1D? T @s+D(s+H1DE T (+H1D(s+ 1) I'(r+s+2)

Define the dispersion function

D, (B)=2Zi=1 e a[R(e;)], (3)
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where R(e;) denotes the rank of e; = y,-—x;-B. Then B can be estimated by the rank

estimator Fr\s which minimizes (3). Then from the following Theorem 1, we can show that

test statistic based on (3) asymptotically converges to a chi-square distribution. Further
Theorem 2 and Theorem 3 indicate that test statistic based on the partial derivatives of (3)
and quadratic form of rank statistic are distribution free and asymptotically converge to a

chi-square distribution respectively.

3. Rank-Based Tests

This section deals with a hypothesis testing in the linear model. We decompose regression
parameters S into B, with (p—¢)x1 and B, with ¢ X1 vectors. The hypotheses of

interest are

Hy: g, = 0, B, unspecified (4)
and
Hy,: g, #+ 0, B unspecified.

Let B, denote the p X1 vector specified by (4) so that we can rewrite the null hypothesis
(4) as Hy: B= By.

3.1 Test Based on D, (f)

Theorem 1 shows that test statistic D based on D, (8) is not distribution free because

of 7, and asymptotically converges to a chi-square distribution.

Theorem 1. Let ﬁ’\o and Er\s be rank estimators of regression parameters S that minimize

the dispersion function D, ((8) for the reduced and full linear model respectively. Suppose
the null hypothesis (4) holds. Then under the assumptions (H1)-(H3) and scores in (1),

D = Dr,s(BO )a)— Dr,s(B’r.\s) (5)
EE

Ty s
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where D,,S(B):\/al) [(nil)’ Ziei{R'(e,-)—r(r)}— (n-ll-l)s gei{(n+1—R(e,~))s—r(s)}],

md 1= ([PFT O+ s-FO AW di)

has an asymptotic xz distribution with ¢ degrees of freedom with 7, and w,; provided

in (2).

Proof We can rewrite the numerator of (5) as

Dr's(l/g\o)_ Dr,s(B’r;) = [Dr_s(/ﬂ\())_ Qr,s(/B\())] + [Qr,s(ﬁ\(])_ Qr,s(/g(;)] + [Qr,s(ﬂ&)_ Qr,s(lg;:s)]
+ [Qr,s(ﬂ;:s)_ Qrs(B:*:)] + [Qr,s(ﬁr,\s)-Dr,s( Er\s)] .

(6)

where  Q,.(8) = D, ()~ (B—Bo)'sr_s(ﬂo)+%\/{;’j n(B=Bo) 2(B—8) (D

_ 1 1 7, _ - 1 —_— Y)S e
and  $..(8) = o [y &1 (R (e = e} = gy H U 1R = 29 }] ®)

Then Jaeckel(1972)'s result can be applied to insist that the first and fifth difference on the
right side of (6) tend to zero in probability.

Next substituting B, which minimizes the quadratic approximation &, ,(8) in (7) and

B, into (7), we have

Qr,s(ﬂ;,s)— Qrs(gr\s) = (E'\s_ﬂ:s)srs(ﬂo)

+1 \ 5" n [ (Brs—B0) 2 (Bre—Bo)—(Bre—Bo) Z(Br—B)]. @

The term in square bracket of (9) can be expressed as (B;s— B, (Brs—Bo+ Brs—Bo).

Thus (9) can be rewritten as

Q. (85— Qo Brd) =V (Bri= 870 [ T S0 B)— 3| o2 VB bt B )| (10

WDy, s

From Theorem 5.2.1 of Hettmansperger(1991), we know that V# (8, ,— 85 ,) tends to zero in
probability and Va( B, s— By) and \/_1_1(37,\3— By) are asymptotically normally distributed.
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Also we know that (1/ \/7¢)Sm( By) are asymptotically normally distributed. Hence we say

that (10), in turn the fourth difference on the right side of (6), tends to zero in probability.
Same result can be obtained for the second difference on the right side of (6).
The equation (6) can be simplified as

D, (By) — D, (B.3) = Q,(8)— Q,.(B,). 11

~1
Further substituting 8,s = B8y + V w,s/7,. 22 (1/m)S,(By) into (7) yields

|
Qr,s(B;:s) = Dr,s(BO - ﬁ —wz._ri Sr,s(ﬁo) 2 Sr,s(ﬁo)a (12)
Using the fact that partition 2 to correspond to the partition of £ is 2, = ( X %12),
21 2
we can easily get the following result from (12).
~y ~y o Ll @ : —1_21}‘0)]
Qr,s(BO) Qr,s(lgr,s) 27’1 z-r,s Sr,s(ﬂo) [2 ( 0 0 Sr,s(ﬂ[))- (13)
Hence, after substituting (13) into (11), we can have from (5)
~ L« (=3t o 1
D = 75,08 [ > ( 0 ) ] 7 5..(80). (14)

Further we know that (14) becomes from Arnold(1981)
(10 = 7= [ (- BB, 1)S,.(80)] (Bz- TaZi'Sw) " [ (- ZaSi 1S, (89)] .

By the way we know that (—2212{11,1)7-1;5”(/90)—‘—1—>Z~MVN(O,V), where

V=2p—TuZn'Ty. Therefore we can say that (14), in turm D, converges in

distribution to Z V~'Z , which is a quadratic form in a multivariate normal vector.
Consequently D converges in chi-square distribution with ¢ degrees of freedom since V is

nonsingular.

3.2 Test Based on S, (3)

Theorem 2 shows that test statistic S, based on S, (8) in (8) is distribution free and
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asymptotically converges to a chi-square distribution.

Theorem 2. Suppose the null hypothesis (4) holds. Then under the assumptions (H1)-(H3)
and scores in (1),

S)s = S(B) [ XXy~ X X(X1X) ' X1 X, ] S, (By)

has an asymptotic xz distribution with ¢ degrees of freedom, where X; and X, are partition

of X to correspond to partition of f.

Proof Recall that from a linear approximation to the partial derivatives of D, ((8), we have

the partitioned form
1 (SB ~ L[ Si(B) _‘/_fr_.s_l_ XX, XiXo\y, ( Bi— Bu 15
‘/—”(52(3)) ‘/_”(52(50 ) Wr,s "(ngl XQXZ) (Bz Bzo)’ 1o

where By = (By,0). Since V#n(By—4B,) is bounded in probability by Theorem 2 of
Choi(2002), we have from (15)

7= 5B > 5080 — | o LX)V H (B 80) - (16)

Further since (1/V %) S,(Bp) =0 for the reduced model, we have from (15)

, -1
Vn (Bo—Bo) = | 2= (£ x1%) " 51080 an

Substituting (17) into (16) becomes

. . 1
5B = s - Loox) (L xx) A s 18)

Then (18) can be rewritten as

Si(B) | = (_22121-11,1)%"5,,430). (19)
Sa(Bo)

7= S(B) = (~ZaZi' D)

SFak
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This result agrees with that shown in the end of proof of Theorem 1. That is, (19) is a
limiting multivariate normal vector with MWV(O,Zzz—ZmZﬁlzlg). Now S, given in
Theorem 2 is a quadratic form using the inverse of covariance matrix and has thus

asymptotic chi-square distribution with ¢ degrees of freedom, which is the rank of matrix.

3.3 One-Way Layout

We consider the one-way layout. The additive one-way model is specified by the

equivalent regression model : y; = a+ Bixq+ Boxpt+ 0 + Bp—1Xip-1 +e; for i=1,--,m,
j=1,,k, N= 2% | n;, where x;;=1 if observation i is from treatment j and x ;=0

otherwise. In general if there are k% treatments, the regression model will have &—1
variables. And let R ;; be the rank of e;; in the combined data. We test Hy: f=0 versus

Hy:8+0 where 8= (B, ,Bs-1). Then Theorem 3 shows that quadratic form of

rank statistic 7 is distribution free and asymptotically converges to a chi-square distribution.

Theorem 3. Suppose the null hypothesis (4) holds. Then under the assumptions (H1)-(H3)
and scores in (1),

2

1 11 Shpr 1 % _ s_
T = @, 5 Jg n; [(N'f‘l)r ;{R,‘j Z'(T)} (N+]_)s g{(N‘JF]. Rl'j) T(S)}

has an asymptotic x? distribution with %—1 degrees of freedom, where (7) = 37, i’/N,

() = IX, iY/N and W, in (2).

Proof. From (8) we know that the vector S, (8;) = S, (0) has ; th component

_ 1 1 &, 1 & N
Sico® = 7o= [y BRI~ 1) - i 2A{WH1-R)=19)]. @)

The quadratic form of (14) can be written as

Lo Ss ) - LENgs
150 25,0 = 4 3T 52,0 @)

Hence when plugging the result (20) into (21), we can establish the following result.
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LomSsme-L$Ll[ 1 $vpr n 1 3 —Ry =]
NSYS(O) Zsr,s(O)— @, s ;g n; [(N+1)r ;{Rif 7'—(7)} (N+1)S ;{(N-*_l Rii) T(S)} .

Numerical Example. Random samples from each of three different types(A, B, C) of light
bulbs are tested to see how long days they last, with the following results. A: 73 64 67 62,
B: 84 8081 77, C: 8279 71 75.

Assuming the exponential distribution with reasonable value of =1 and s=3, we can

obtain T=6.869 > x% 44=>5.991. The null hypothesis that all population distribution

functions are identical is rejected. The critical level is estimated to be about @ = (0.034 .

4. Conclusions

In this paper we developed the null asymptotic theory of the rank-based tests focused on a
new score function. We obtained some properties of these tests. First we established that
test statistic D based on our dispersion function is not distribution free and asymptotically
converges to a chi-square distribution. Further test statistic S,'; s generated by the partial
derivatives of our dispersion function, which is a quadratic form using the inverse of
covariance matrix, has thus asymptotic chi-square distribution.

Further we showed that quadratic form of rank statistic 7° for the one-way layout is
distribution free and asymptotically converges to a chi-square distribution.
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