Browse > Article
http://dx.doi.org/10.4134/JKMS.2014.51.1.113

EXTREME PRESERVERS OF TERM RANK INEQUALITIES OVER NONBINARY BOOLEAN SEMIRING  

Beasley, LeRoy B. (Department of Mathematics and Statistics Utah State University)
Heo, Seong-Hee (Department of Mathematics Jeju National University)
Song, Seok-Zun (Department of Mathematics and Research Institute for Basic Sciences Jeju National University)
Publication Information
Journal of the Korean Mathematical Society / v.51, no.1, 2014 , pp. 113-123 More about this Journal
Abstract
The term rank of a matrix A over a semiring $\mathcal{S}$ is the least number of lines (rows or columns) needed to include all the nonzero entries in A. In this paper, we characterize linear operators that preserve the sets of matrix ordered pairs which satisfy extremal properties with respect to term rank inequalities of matrices over nonbinary Boolean semirings.
Keywords
term rank; linear operator; nonbinary Boolean semiring;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 L. B. Beasley, A. E. Guterman, Linear preservers of extremes of rank inequalities over semirings, J. Math. Sciences 131 (2005), no. 5, 5919-5938.   DOI   ScienceOn
2 L. B. Beasley, A. E. Guterman, Y. B. Jun, and S. Z. Song, Linear preservers of extremes of rank inequalities over semirings: row and column ranks, Linear Algebra and Its Applications, 413 (2006), no. 2-3, 495-509.   DOI   ScienceOn
3 L. B. Beasley, S. G. Lee, and S. Z. Song, Linear operators that preserve pairs of matrices which satisfy extreme rank properties, Linear Algebra Appl. 350 (2002), 263-272.   DOI   ScienceOn
4 L. B. Beasley and N. J. Pullman, Term rank, permanent and rook polynomial preservers, Linear Algebra Appl. 90 (1987), 33-46.   DOI   ScienceOn
5 L. B. Beasley, S. Z. Song, and K. T. Kang, Preservers of term ranks of symmetric matrices, Linear Algebra Appl. 436 (2012), no. 6, 1727-1738.   DOI   ScienceOn
6 K. T. Kang, S. Z. Song, and L. B. Beasley, Linear preservers of term ranks of matrices over semirings, Linear Algebra Appl. 436 (2012), no. 7, 1850-1862.   DOI   ScienceOn
7 S. Kirkland and N. J. Pullman, Linear operators preserving invariants of nonbinary matrices, Linear and Multilinear Algebra 33 (1992), no. 3-4, 295-300.   DOI   ScienceOn
8 C. K. Li and S. Pierce, Linear preserver problems, Amer. Math. Monthly 108 (2001), no. 7, 591-605.   DOI   ScienceOn
9 S. Pierce and others, A survey of linear preserver problems contents, Linear and Multilinear Algebra 33 (1992), no. 1-2, 1-119.   DOI   ScienceOn
10 S. Z. Song and M. H. Kang, Linear Preservers of Extremes of Matrix Pairs Over Nonbinary Boolean Algebra, Bull. Malays. Math. Sci. Soc. 36 (2013), no. 1, 73-81.
11 S. Z. Song, M. H. Kang, and Y. B. Jun, Extreme sets of rank inequalities over Boolean matrices and their preservers, Commun. Korean Math. Soc. 28 (2013), no. 1, 1-9.   과학기술학회마을   DOI   ScienceOn
12 L. B. Beasley, A. E. Guterman, Rank inequalities over semirings, J. Korean Math. Soc. 42 (2005), no. 2, 223-241.   과학기술학회마을   DOI   ScienceOn