• Title/Summary/Keyword: Laguerre functions

Search Result 42, Processing Time 0.03 seconds

Analysis of Transient Scattering from Conducting Objects using Weighted Laguerre Polynomials and Electric Field Integral Equation (가중 라게르 다항식과 전장적분식을 이용한 도체의 과도 산란 해석)

  • 정백호;정용식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.937-946
    • /
    • 2002
  • In this paper, we present a stable solution of the transient electromagnetic scattering from the conducting objects. This method does not utilize the conventional marching-on in time (MOT) solution. Instead we solve the time domain integral equation by expressing the transient behavior of the induced current in terms of weighted Laguerre polynomials. By using this basis functions for the temporal variation, the time derivative in the integral equation can be handled analytically. Since these temporal basis functions converge to zero as time progresses, the transient response of the induced current does not have a late time oscillation. To show the validity of the proposed method, we solve a time domain electric feld integral equation and compare the results of MOT, Mie solution, and the inverse discrete Fourier transform (IDFT) of the solution obtained in the frequency domain.

Identification Using Orthonormal Functions

  • Bae, Chul-Min;Wada, Kiyoshi;Imai, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.285-288
    • /
    • 1998
  • A least-squares identification method is studied that estimates a finite number of coefficients in the series expansion of a transfer function, where the expansion is in terms of recently introduced generalized basis functions, We will expand and generalize the orthogonal functions as basis functions for dynamical system representations. To this end, use is made of balanced realizations as inner transfer functions. The orthogonal functions can be considered as generalizations of, for example, the pulse functions, Laguerre functions, and Kautz functions, and give rise to an alternative series expansion of rational transfer functions. We show that the Laplace transform of the expansion for some sets$\Psi_{\kappa}(Z)$ is equivalent to a series expansion . Techniques based on this result are presented for obtaining the coefficients $c_{n}$ as those of a series. One of their important properties is that, if chosen properly, they can substantially increase the speed of convergence of the series expansion. This leads to accurate approximate models with only a few coefficients to be estimated. The set of Kautz functions is discussed in detail and, using the power-series equivalence, the truncation error is obtained.

  • PDF

EXTENSIONS OF MULTIPLE LAURICELLA AND HUMBERT'S CONFLUENT HYPERGEOMETRIC FUNCTIONS THROUGH A HIGHLY GENERALIZED POCHHAMMER SYMBOL AND THEIR RELATED PROPERTIES

  • Ritu Agarwal;Junesang Choi;Naveen Kumar;Rakesh K. Parmar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.575-591
    • /
    • 2023
  • Motivated by several generalizations of the Pochhammer symbol and their associated families of hypergeometric functions and hypergeometric polynomials, by choosing to use a very generalized Pochhammer symbol, we aim to introduce certain extensions of the generalized Lauricella function F(n)A and the Humbert's confluent hypergeometric function Ψ(n) of n variables with, as their respective particular cases, the second Appell hypergeometric function F2 and the generalized Humbert's confluent hypergeometric functions Ψ2 and investigate their several properties including, for example, various integral representations, finite summation formulas with an s-fold sum and integral representations involving the Laguerre polynomials, the incomplete gamma functions, and the Bessel and modified Bessel functions. Also, pertinent links between the major identities discussed in this article and different (existing or novel) findings are revealed.

Transient Analysis of General Dispersive Media Using Laguerre Functions (라게르 함수를 이용한 일반적인 분산 매질의 시간 영역 해석)

  • Lee, Chang-Hwa;Kwon, Woo-Hyen;Jung, Baek-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.1005-1011
    • /
    • 2011
  • In this paper, we present a marching-on-in-degree(MOD) finite difference method(FDM) based on the Helmholtz wave equation for analyzing transient electromagnetic responses in a general dispersive media. The two issues related to the finite difference approximation of the time derivatives and the time consuming convolution operations are handled analytically using the properties of the Laguerre functions. The basic idea here is that we fit the transient nature of the fields, the flux densities, the permittivity with a finite sum of orthogonal Laguerre functions. Through this novel approach, not only the time variable can be decoupled analytically from the temporal variations but also the final computational form of the equations is transformed from finite difference time-domain(FDTD) to a finite difference formulation through a Galerkin testing. Representative numerical examples are presented for transient wave propagation in general Debye, Drude, and Lorentz dispersive medium.

Transient Analysis of Conducting Wire Antennas Using Laguerre Polynomials (라게르 함수를 이용한 도선 안테나의 과도해석)

  • Kim, Hyung-Jin;Kim, Chung-Soo;Park, Jae-Kwon;Jung, Baek-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.266-269
    • /
    • 2003
  • In this work, a new formulation is presented for analyzing the transient electromagnetic response from wire antennas using the time-domain integral equation. The solution method is based on the Galerkin's method that involves separate spatial and temporal testing procedures. Piecewise triangle basis functions have been used for spatial expansion functions for arbitrarily shaped wire structures. The time-domain variation is approximated by a set of orthonormal basis functions that are derived from the Laguerre polynomials. The method presented in this paper results in very stable transient responses from wire antennas.

  • PDF

THE POLYANALYTIC SUB-FOCK REPRODUCING KERNELS WITH CERTAIN POSITIVE INTEGER POWERS

  • Kim, Hyeseon
    • Honam Mathematical Journal
    • /
    • v.44 no.3
    • /
    • pp.447-460
    • /
    • 2022
  • We consider a closed subspace ${\tilde{A}}^{{\alpha},m}_q$ (ℂ) of the Fock space Aα,mq (ℂ) of q-analytic functions with the weight ϕ(z) = -α log |z|2+|z|2m for any positive integer m. We obtain the corresponding reproducing kernel Kα,q,m(z, w) using the weighted Laguerre polynomials and the Mittag-Leffler functions. Finally, we investigate the necessary and sufficient condition on (α, q, m) such that Kα,q,m(z, w) is zero-free.

Identification of System from Generalized Orthogonal Basis Function Expansions

  • Bae, Chul-Min;Wada, Kiyoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.26.1-26
    • /
    • 2001
  • In this paper, we will expand and generalize the orthogonal functions as basis functions for dynamical system representations. The orthogonal functions can be considered as generalizations of, for example, the pulse functions, Laguerre functions, and Kautz functions, and give rise to an alternative series expansion of rational transfer functions. It is shown row we can exploit these generalized basis functions to increase the speed of convergence in a series expansion. The set of Kautz functions is discussed in detail and, using the power-series equivalence, the truncation error is obtained. And so we will present the influence of noises to use Kautz function on the identification accuracy.

  • PDF

CERTAIN NEW GENERATING RELATIONS FOR PRODUCTS OF TWO LAGUERRE POLYNOMIALS

  • CHOI, JUNESANG;RATHIE, ARJUN KUMAR
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.191-200
    • /
    • 2015
  • Generating functions play an important role in the investigation of various useful properties of the sequences which they generate. Exton [13] presented a very general double generating relation involving products of two Laguerre polynomials. Motivated essentially by Exton's derivation [13], the authors aim to show how one can obtain nineteen new generating relations associated with products of two Laguerre polynomials in the form of a single result. We also consider some interesting and potentially useful special cases of our main findings.

Probabilistic Time Series Forecast of VLOC Model Using Bayesian Inference (베이지안 추론을 이용한 VLOC 모형선 구조응답의 확률론적 시계열 예측)

  • Son, Jaehyeon;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.305-311
    • /
    • 2020
  • This study presents a probabilistic time series forecast of ship structural response using Bayesian inference combined with Volterra linear model. The structural response of a ship exposed to irregular wave excitation was represented by a linear Volterra model and unknown uncertainties were taken care by probability distribution of time series. To achieve the goal, Volterra series of first order was expanded to a linear combination of Laguerre functions and the probability distribution of Laguerre coefficients is estimated using the prepared data by treating Laguerre coefficients as random variables. In order to check the validity of the proposed methodology, it was applied to a linear oscillator model containing damping uncertainties, and also applied to model test data obtained by segmented hull model of 400,000 DWT VLOC as a practical problem.

Unconditionally Stable Analysis of Transient Scattering from Conductors Using Time-Domain Combined Field Integral Equations (시간영역 결합적분식을 이용한 도체 과도산란의 무조건 안정된 해석)

  • 정백호;서정훈;이원우
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.8
    • /
    • pp.340-348
    • /
    • 2003
  • In this paper, we propose a novel formulation to solve a time-domain combined field integral equation (CFIE) for analyzing the transient electromagnetic scattering response from closed conducting bodies. Instead of the conventional marching-on in time (MOT) technique, tile solution method in this paper is based on the moment method that involves separate spatial and temporal testing procedures. Triangular patch vector functions are used for spatial expansion and testing functions for three-dimensional arbitrarily shaped closed structures. The time-domain unknown coefficient is approximated as a basis function set that is derived from tile Laguerre functions with exponentially decaying functions. These basis functions are also used as the temporal testing. Numerical results computed by the proposed method arc stable without late-time oscillations and agree well with the frequency-domain CFIE solutions.