DOI QR코드

DOI QR Code

EXTENSIONS OF MULTIPLE LAURICELLA AND HUMBERT'S CONFLUENT HYPERGEOMETRIC FUNCTIONS THROUGH A HIGHLY GENERALIZED POCHHAMMER SYMBOL AND THEIR RELATED PROPERTIES

  • Ritu Agarwal (Department of Mathematics Malaviya National Institute of Technology) ;
  • Junesang Choi (Department of Mathematics Dongguk University) ;
  • Naveen Kumar (Department of Mathematics Malaviya National Institute of Technology) ;
  • Rakesh K. Parmar (Department of HEAS (Mathematics) University College of Engineering and Technology and Department of Mathematics Ramanujan School of Mathematical Sciences Pondicherry University-A Central University)
  • Received : 2021.09.01
  • Accepted : 2023.03.10
  • Published : 2023.05.31

Abstract

Motivated by several generalizations of the Pochhammer symbol and their associated families of hypergeometric functions and hypergeometric polynomials, by choosing to use a very generalized Pochhammer symbol, we aim to introduce certain extensions of the generalized Lauricella function F(n)A and the Humbert's confluent hypergeometric function Ψ(n) of n variables with, as their respective particular cases, the second Appell hypergeometric function F2 and the generalized Humbert's confluent hypergeometric functions Ψ2 and investigate their several properties including, for example, various integral representations, finite summation formulas with an s-fold sum and integral representations involving the Laguerre polynomials, the incomplete gamma functions, and the Bessel and modified Bessel functions. Also, pertinent links between the major identities discussed in this article and different (existing or novel) findings are revealed.

Keywords

Acknowledgement

The fourth-named author has carried out this research under the project MATRICS, SERB, Department of Science & Technology (DST), India (File No. MTR/2019/001328).

References

  1. R. Agarwal, R. K. Parmar, and S. D. Purohit, Operators of fractional calculus and associated integral transforms of the (r, s)-extended Bessel-Struve kernel function, Int. J. Appl. Comput. Math. 6 (2020), no. 6, Paper No. 175, 18 pp. https://doi.org/10.1007/s40819-020-00927-x
  2. T. M. Apostol, Mathematical Analysis, second edition, Addison-Wesley Publishing Co., Reading, MA, 1974.
  3. R. A. Askey, The q-gamma and q-beta functions, Applicable Anal. 8 (1978/79), no. 2, 125-141. https://doi.org/10.1080/00036817808839221
  4. R. A. Askey, Ramanujan's extensions of the gamma and beta functions, Amer. Math. Monthly 87 (1980), no. 5, 346-359. https://doi.org/10.2307/2321202
  5. W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, Stechert-Hafner, Inc., New York, 1964.
  6. B. C. Carlson, Special Functions of Applied Mathematics, Academic Press, New York, 1977.
  7. M. A. Chaudhry, Transformation of the extended gamma function $\Gamma^{2,0}_{0,2}$[(b, x)] with applications to astrophysical thermonuclear functions, Astrophys. Space Sci. 262 (1998/99), no. 3, 263-270. https://doi.org/10.1023/A:1001843927721
  8. M. A. Chaudhry, A. Qadir, M. Rafique, and S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Math. 78 (1997), no. 1, 19-32. https://doi.org/10.1016/S0377-0427(96)00102-1
  9. M. A. Chaudhry, N. M. Temme, and E. J. M. Veling, Asymptotics and closed form of a generalized incomplete gamma function, J. Comput. Appl. Math. 67 (1996), no. 2, 371-379. https://doi.org/10.1016/0377-0427(95)00018-6
  10. M. A. Chaudhry and S. M. Zubair, Generalized incomplete gamma functions with applications, J. Comput. Appl. Math. 55 (1994), no. 1, 99-124. https://doi.org/10.1016/0377-0427(94)90187-2
  11. M. A. Chaudhry and S. M. Zubair, On the decomposition of generalized incomplete gamma functions with applications of Fourier transforms, J. Comput. Appl. Math. 59 (1995), no. 3, 253-284. https://doi.org/10.1016/0377-0427(94)00026-W
  12. M. A. Chaudhry and S. M. Zubair, On an extension of generalized incomplete gamma functions with applications, J. Austral. Math. Soc. Ser. B 37 (1996), no. 3, 392-405. https://doi.org/10.1017/S0334270000010730
  13. M. A. Chaudhry and S. M. Zubair, On a connection between the generalized incomplete gamma functions and their extensions, J. Austral. Math. Soc. Ser. B 38 (1997), no. 4, 581-589. https://doi.org/10.1017/S0334270000000874
  14. M. A. Chaudhry and S. M. Zubair, On a Class of Incomplete Gamma Functions with Applications, Chapman & Hall/CRC, Boca Raton, FL, 2002.
  15. M. A. Chaudhry and S. M. Zubair, Extended incomplete gamma functions with applications, J. Math. Anal. Appl. 274 (2002), no. 2, 725-745. https://doi.org/10.1016/S0022-247X(02)00354-2
  16. J. Choi and R. K. Parmar, Fractional integration and differentiation of the (p, q)-extended Bessel function, Bull. Korean Math. Soc. 55 (2018), no. 2, 599-610. https://doi.org/10.4134/BKMS.b170193
  17. J. Choi and R. K. Parmar, Fractional calculus of the (p, q)-extended Struve function, Far East J. Math. Sci. 103 (2018), no. 2, 541-559 . https://doi.org/10.17654/MS103020541
  18. J. Choi, R. K. Parmar, and H. M. Srivastava, The incomplete Lauricella functions of several variables and associated properties and formulas, Kyungpook Math. J. 58 (2018), no. 1, 19-35. https://doi.org/10.5666/KMJ.2018.58.1.19
  19. J. Choi, A. K. Rathie, and R. K. Parmar, Extension of extended beta, hypergeometric and confluent hypergeometric functions, Honam Math. J. 36 (2014), no. 2, 357-385. https://doi.org/10.5831/HMJ.2014.36.2.357
  20. A. Erd'elyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill Book Company, New York, Toronto and London, 1953.
  21. W. Gautschi, A computational procedure for the incomplete Gamma function, ACTM Trans. Math. Software 5 (1979), 466-481. https://doi.org/10.1145/355853.355863
  22. Y. L. Luke, Mathematical Functions and Their Approximations, Academic Press, Inc., New York, 1975.
  23. M.-J. Luo, R. K. Parmar, and R. K. Raina, On extended Hurwitz-Lerch zeta function, J. Math. Anal. Appl. 448 (2017), no. 2, 1281-1304. https://doi.org/10.1016/j.jmaa.2016.11.046
  24. W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Third Enlarged edition, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berucksichtingung der Anwendungsgebiete, Bd. 5, Springer-Verlag, Berlin, Heidelberg and New York, 1966.
  25. D. J. Masirevic, R. K. Parmar, and T. K. Pogany, (p, q)-extended Bessel and modified Bessel functions of the first kind, Results Math. 72 (2017), no. 1-2, 617-632. https://doi.org/10.1007/s00025-016-0649-1
  26. A. R. Miller, Reductions of a generalized incomplete gamma function, related Kamp'e de F'eriet functions, and incomplete Weber integrals, Rocky Mountain J. Math. 30 (2000), no. 2, 703-714. https://doi.org/10.1216/rmjm/1022009290
  27. A. R. Miller and I. S. Moskowitz, On certain generalized incomplete gamma functions, J. Comput. Appl. Math. 91 (1998), no. 2, 179-190. https://doi.org/10.1016/S0377-0427(98)00031-4
  28. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (Editors), NIST Handbook of Mathematical Functions, [With 1 CD-ROM (Windows, Macintosh and UNIX)], US Department of Commerce, National Institute of Standards and Technology, Washington, D.C., 2010. 
  29. E. Ozergin, M. A. Ozarslan, and A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235 (2011), no. 16, 4601-4610. https://doi.org/10.1016/j.cam.2010.04.019
  30. P. A. Padmanabham and H. M. Srivastava, Summation formulas associated with the Lauricella function $F^{(r)}_A$, Appl. Math. Lett. 13 (2000), no. 1, 65-70. https://doi.org/10.1016/S0893-9659(99)00146-9
  31. R. K. Parmar, P. Chopra, and R. B. Paris, On an extension of extended beta and hypergeometric functions, J. Class. Anal. 11 (2017), no. 2, 91-106. https://doi.org/10.7153/jca-2017-11-07
  32. R. K. Parmar and T. K. Pog'any, On (p, q)-extension of further members of BesselStruve functions class, Miskolc Math. Notes 20 (2019), no. 1, 451-463. https://doi.org/10.18514/MMN.2019.2608
  33. R. K. Parmar and T. K. Pogany, On Mathieu-type series for the unified Gaussian hypergeometric functions, Appl. Anal. Discrete Math. 14 (2020), no. 1, 138-149. https://doi.org/10.2298/AADM190525014P
  34. R. K. Parmar, T. K. Pogany, and R. K. Saxena, On properties and applications of (p, q)-extended τ-hypergeometric functions, C. R. Math. Acad. Sci. Paris 356 (2018), no. 3, 278-282. https://doi.org/10.1016/j.crma.2017.12.014
  35. E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960.
  36. H. M. Srivastava, On a summation formula for the Appell function F2, Proc. Cambridge Philos. Soc. 63 (1967), 1087-1089. https://doi.org/10.1017/s0305004100042146
  37. R. Srivastava, Some generalizations of Pochhammer's symbol and their associated families of hypergeometric functions and hypergeometric polynomials, Appl. Math. Inf. Sci. 7 (2013), no. 6, 2195-2206. https://doi.org/10.12785/amis/070609
  38. R. Srivastava, Some classes of generating functions associated with a certain family of extended and generalized hypergeometric functions, Appl. Math. Comput. 243 (2014), 132-137. https://doi.org/10.1016/j.amc.2014.05.074
  39. H. M. Srivastava, A. C, etinkaya, and . Kiymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput. 226 (2014), 484-491. https://doi.org/10.1016/j.amc.2013.10.032
  40. R. Srivastava and N. E. Cho, Some extended Pochhammer symbols and their applications involving generalized hypergeometric polynomials, Appl. Math. Comput. 234 (2014), 277-285. https://doi.org/10.1016/j.amc.2014.02.036
  41. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood Series: Mathematics and its Applications, Horwood, Chichester, 1985.
  42. H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood Series: Mathematics and its Applications, Horwood, Chichester, 1984.
  43. H. M. Srivastava, R. K. Parmar, and P. Chopra, A class of extended fractional derivative operators and associated generating relations involving hypergeometric functions, Axioms 1 (2012), no. 3, 238-258. https://doi.org/10.3390/axioms1030238
  44. H. M. Srivastava, R. K. Parmar, and M. M. Joshi, Extended Lauricella and Appell functions and their associated properties, Adv. Stud. Contemporary Math. 25 (2015), no. 2, 151-165.
  45. G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, England, 1944.
  46. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions: With an Account of the Principal Transcendental Functions, fourth edition. Reprinted., Cambridge Univ. Press, New York, 1962.
  47. Z.-H. Yang and Y.-M. Chu, Asymptotic formulas for gamma function with applications, Appl. Math. Comput. 270 (2015), 665-680. https://doi.org/10.1016/j.amc.2015.08.087