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CERTAIN NEW GENERATING RELATIONS FOR
PRODUCTS OF TWO LAGUERRE POLYNOMIALS

JUNESANG CHOI AND ARJUN KUMAR RATHIE

ABSTRACT. Generating functions play an important role in the investi-
gation of various useful properties of the sequences which they generate.
Exton [13] presented a very general double generating relation involving
products of two Laguerre polynomials. Motivated essentially by Exton’s
derivation [13], the authors aim to show how one can obtain nineteen new
generating relations associated with products of two Laguerre polynomi-
als in the form of a single result. We also consider some interesting and
potentially useful special cases of our main findings.

1. Introduction and preliminaries

Throughout this paper, N, R, C, and Z; denote the sets of positive integers,
real numbers, complex numbers, and nonpositive integers, respectively, and
No =NuU {0}

It is well known that generating functions involving Laguerre polynomials
play an important role due to their appearance in various branches of pure and
applied mathematics (see, e.g., [11, 15]). The Laguerre polynomials have been
fully discussed by many authors (see [11, 12, 15]).

By using a two dimensional extension of a very general series transform
given by Bailey, Exton [13] deduced a very general double generating relation
for products of two Laguerre polynomials whose several interesting special cases
were also presented.

Here, in this paper, we aim at showing how one can obtain nineteen new
generating relations involving products of two Laguerre polynomials in the
form of a single result. We also consider some interesting and potentially
useful specials cases of our main findings, including the results due to Exton in
corrected forms. The results are derived with the help of a general formula for
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the reducibility of Kampé de Fériet function recently obtained by the authors
[9].

For our purpose, we begin by recalling the generalized hypergeometric series
»Fy is defined by (see [3], [14, p. 73], [16] and [17, pp. 71-75]):

ar, - 0py 1S (a1)n - (ap)n 2"
qu |:ﬁ1; ey Bq; Z:| 771220 (ﬂl)n(ﬂq)n n!
=, Fy (a1, ..., ap; b1, ..., Bg; ),

where (), is the Pochhammer symbol defined (for A € C) by (see [17, p. 2 and

(1)

p- 5]):
| 1 (n=0)
o (Mn s = AMA+1)...(A+n—1) (neN)
T\ +n) -
=0y (A eC\Zy)

and I'(\) is the familiar Gamma function. Here p and ¢ are positive integers
or zero (interpreting an empty product as 1), and we assume (for simplicity)

that the variable z, the numerator parameters o, .. ., oy, and the denominator
parameters 31, ..., 3, take on complex values, provided that no zeros appear
in the denominator of (1), that is,

3) (B €C\Zy; j=1,....q).

We also recall a double hypergeometric function which is defined and introduced
by Kampé de Fériet and subsequently abbreviated by Burchnall and Chaundy
[5, 6]. Here, we use a slightly modified notation of the function given by Srivas-
tava and Panda [20, p. 423, Eq. (26)]. For this, let (hz) denote the sequence of
parameters (hi, ha, ..., hy) and, for n € Ny, define the Pochhammer symbol

((he))n i= (ha)n - -~ (hir)ns

where, when n = 0, the product is understood to reduce to unity. Therefore,
the most convenient generalization of Kampé de Fériet function [1] is defined
as follows:

(4)

The symbol (h) is a convenient contraction for the sequence of the parameters
hi, ha, ..., hy and the Pochhammer symbol (h),, is the same as defined in (2).
For details about the convergence for this function, we refer to [18, 19].
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Many authors have investigated the reducibility of Kampé de Fériet function
(see, e.g., [7]). The Laguerre polynomials are defined by (see [11])

(5) L@(z) = W g { o xl .

n! a+1;

In a two-dimensional extension of a very general series transform due to Bailey
[2], Exton [13] deduced the following interesting double generating relation for
a product of two Laguerre polynomials:
—n;
1F1 —t
p;

Ymgn ™ S" —m;
ZZ i min! 1Fll p,_—y
m+n (@y)™ (s)™  pioio | (@) F—i—;
ZZ Fe:oj0 (9) : —; LB s

(6) m=0 n=0 ’
0 70 m-l-n P )m (p)n m!n! — —

Moreover, as a simple consequence of the binomial theorem, the inner double
series on the right-hand side of (6) is seen to immediately reduce to a single
series. Also, if the confluent hypergeometric functions appearing on the left-
hand side of (6) are replaced by their representations as Laguerre polynomials
(changing y to —y and ¢ to —t) we arrive at the following result:

ZZ ’"*") LW L
)"

=0 n=0 )m+"

" Z Z (d)) (=st)" (d);
m+n i DFG ’ T+ s
0 n=0 (9))mtn (0 )m (P)n m!n! (9);
In (7), taking s = —x, the inner hypergeometric series reduces to unity and

Exton obtained the following very general generating relation for the product
of two Laguerre polynomials in terms of Kampé de Fériet function:

m n _1)n$m+n . _
5 5 (@hean GOy o
m=0 n=0 m n m n
(8)
= 00 (d) T ; —xy, xt
G:1;1 (g) . p/ Cop o ’

and deduced the following interesting result:

Z Z m+n UM ) L0 ()

=0 n—=0 Nman (P)m (P)n

1 1 1
’ (2): (30+3):
- F _4D-G-1,2 2
2Dt'2G+3 1 1 . 1 1 1 . 1- ry |
29 , 29 9 y Dy 2pa 2p 97

which is a known result due to Exton [13]. Further, in (9), if we set

—~
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(i) D=1and G = 0;
(i) D=2,G=0,d; =pand d2 = 2p;
(iii) D=2,G=0,d; =pand dy =2p — 1,
we, respectively, obtain the following results:
m+n

ZZ ’”*” DU 1o y) 10D ()

p)n

(10) _
R [;? e y] = T(p) () Jypr (22),

where J,(z) is the Bessel function of the first kind having the following con-
nection with oFy(-) (see, e.g., [4, p. 675)):

(11) oF1 [V:: ZZ} =T(v+1) (g)_” Ju(2);
- m+n 2p m+n (71)71 szrn L(pfl) L(P*l)
3y el W
(12) 1

2; —4x%y? (1+4x2y2) T %,

0o 0 —1)7 pmtn
Z Z Jm-n (2P (p)l)m(;;( ) Lgﬁfl)(y) L(pfl)(y)
—0 m n

3
]
o
S

(13) 1
P=o — 42?2 :(1+4x2y2)7p+5.

= 1Fo
We remark in passing that the identity (13) is the corrected form of the
result obtained by Exton [13].

Very recently, the authors [9] have obtained nineteen interesting formulas
for reducibility of Kampé de Fériet function in the form of a single result which
is recalled here:

00| (@) : ; ; r(3) T(p) T(p+i)
14 D:0:0 _ :#
(14) G:1;1 l @) : p+i; p ; z,x T (p+3(i+lil))

y i 4"(P6=D) (—a?)" (3d)),, (3d)+D).
() (o) F Dn (1 (Lot L) (2ot TGFDFD)n

{ A 5——1+[ ) + B (1-gi+[2])n }
TGt 10 Do A—(5) 4 19, | T+ Im DTG4 (o 3 D
(d) , T(3)T@ e+
(9) U (1+p+3 (i+lil))

+
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[e ]
% Z 4 P7CY (—a®)" ((3d)+5)n ((3d+3)+5)n
. ! ((39+3)n ((39+3)+3)n (3)n (3+50+5 G+ n L+5p+5 (+]i))n
n—
% { A (=34 Dn BY (5—3i+[5Dn }
P(3+3i+0) T(Gi—[F) G+3itp)n | Dle+3) PGi=[3i-3) (p+30n J 7
where i = 0, +1, ..., 9. Here, as usual, [x] denotes the greatest integer less

than or equal to = € R and its absolute value is denoted by |z|. The coefficients
Al and B] can be obtained from the Tables of .A; and B; by simply substituting
a and b with —2n and 1 — p — 2n, respectively, while the coefficients A} and
B! can be obtained from the Tables of A; and B; by substituting a and b with
—2n — 1 and —p — 2n, respectively.

TABLE 1. Table for A; and B;

Li] A | B:

9 | —16a* + 72a3b — 108a%b? + 60ab? 16a* — 56a°b 4+ 60ab? — 20ab> + b*
—9b* — 328a> + 972a%b — 792ab? +248a® — 516a2b + 240ab® — 1063
+1506% — 2240a? + 3612ab — 99952 +1160a? — 1028ab + 35b2
—5696a + 3162b — 3984 +1576a — 50b — 24

8 | 8a* — 32a%b + 40a2b? — 16ab>® + b* 8% — 40ab? + 48a2%b — 16a°® — 19242
+128a® — 312a2b + 176ab? — 1063 + 624a2 | +312ab — 88b% — 640a + 352b — 512
+624a2 — 672ab + 35b2
+896a — 50b + 24

71 763 — 28ab? + 28a2b — 8a® — 100a? 8a® — 20a2b + 12ab? — b3 + 68a>
+196ab — 7062 — 352a + 245b — 302 —76ab+ 6b% + 128a — 110+ 6

6 | 4a® — 12a2b + 9ab? — b3 + 36a2 — 51ab 16ab — 8a2 — 6b2 — 48a + 34b — 52
+6b2 4+ 7T4a — 11b+6

5| 10ab — 4a® — 5b% — 26a + 25b — 32 4a2 — 6ab + b2 + 14a — 3b+ 2

4| 2a% —4ab+b*>+8a —3b+ 2 4(b—a —2)

3|13b—2a—-5 2a—b+1

2|1+a—-b -2

1] -1 1

01 0
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TABLE 2. Table for A; and B;

—9 | 16a* — 72a3b + 108a%b? — 60ab> 16a* — 56a3b + 60ab? — 20ab® + b*
+9b* — 32003 + 972a%b — 828ab? —256a3 + 564a%b — 300ab? + 26b3
+174b3 4 224042 — 3936ab + 1323b> +1376a® — 1568ab + 25112
—6400a + 4614b + 6144 —2816a + 1066b + 1680

—8 | 8a* — 32a3b + 40a2b? — 16ab® + b* 16a® — 48a2b + 40ab® — 8b> — 19242
—128a® + 328a2b — 208ab? + 22b3 + 688a? | +328ab — 104b2 + 704a — 480b — 768
—928ab + 179b% — 1408a + 638b + 840

—7 | 8a® — 28a%b + 28ab? — Tb® — 964> 8a® — 20a%b + 12ab® — b3 — 72a?
+196ab — 77b% + 352a — 294b — 384 +92ab — 150 + 184a — 74b — 120

—6 | 4a® — 12a%b 4 9ab® — b3 — 36a® + 57ab 8a? — 16ab + 6b> — 48a + 38b + 64
—12b% 4 92a — 47b — 60

—5 | 4a® — 10ab + 5b% — 24a + 25b + 32 462 — 6ab+ b%> — 16a + 7b + 12

—4 | 2a* — 4ab+b* —8a+ 5b+6 4(a—b—2)

—3|2a—3b—4 2a —b—2

—2|la—-b-1 2

-1]1 1

Here, by using (8) and (14), we establish a general generating relation for

2. A new generating relation

product of two Laguerre polynomials asserted by the following theorem.

Theorem. The following generating function holds true:

(15)

x Z T
n=0

o0

>

m=0 n=0

o0

((d))WL+n (_1)n g™
((9)m+n (P+)m (P)n — ™

L&D (y) LD (y)

r'($) (p) [(p+i)

_ I
n T r(p+iGHED)

4" PGV (a2 )" (Ad))n (A +D)n

x Z;) A (G)n (GO D (D (Sp+ L H)m BT 3 GHIDF D

+

{ Al (5= 5+ Dn
T(p+30) T(3i+5— [ (p+30)n

@,,
+(9)2

Bl (1-4i+[3])n )

Tor3i-5)TGi-5i) b 3i-5)n

r(1)T(p) D(p+i)
T (1+p+3 (6+lil))

4nP=GD (g2 g™ (Fd)+1)n (Bd+D)+1)n
39+ 3D (39+3)+3)n (3)n (G+30+5 @ +[i)n (14 Fp+5 (i+]i)n
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x{ AL (=it [ ) n B! (3= Lit[iDn }
D(3+3i+p) D(3i=3) (G+3i4p)n | T3 D(3i-[31-3) (P+30)n
where ¢ = 0, 1, ..., +9, the coefficients A;, B;, A;, B, AY, B!, and other
notations are same as in (14).

Proof. We can derive our generating relation in a straightforward way. Indeed,
if we set t =y and p’ = p+4 in (8), then, for i =0, 1, ..., +9, we obtain

71)nzm+n .
m+n i— —
50 Y Wen CFEE ppin ) 20
0; (d) P ;
:FDO’O . — Y, TY
GEL () s p+i 5P

m=0 n=0

(16)

Replacing = by zy in (14) and applying the resulting identity to (16), we get
our desired generating relation (15). This completes the proof of (15). O

3. Special cases

Here, we consider some interesting special cases of our main result.
If we take ¢ = 1 in (15), then, after some simplification, we get the following
result:

n ,.m+tn

oo oo ((d))m+n (*1) €T (;D) (pfl)
2 2 (@)men @+ Don () = (y) L™ (y)

17 m=0 n=0
" 2pFoc 3 (%d)’ (%d)—i—%; —gP=G1 22
T lGe), Go) +ip p+d e
(d) =y
+_7
(9) p(p+1)
ld +l7 ld+l +l;
XopFogys (3d) + 3 (zd+3)+3 4D_G_1:c2y2].

), ifwe take

Further, in (17
(i) D=1,G=0and d=p+1;
(i) D=2,G=0,d; =p+1 and dy = 2p,
we, respectively, obtain the following results:

(P + Dt (Z1)" 2™ ) 1)
LW (y) L
ZZ ot Do Bly) LD (y)

m=0 n=0

- 2.2 Ty ; 2.2
_ 4 —= F _

. :cy} p01{p+1; SCZ/}

zy)lip {prl(sz) + Jp(Qxy)} ;

(18)

I
o
=
L —

I
e
=
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oo 0o —1) pmtn
S Y (p+ 1)m+(1p(ipl);::(zp()n1) L) (y) L=V (y)

1
(19) 15y p+§, —4z2y?| + 22y Fy p+§, —4z2qy?
= (1+2zy) (1+42° yQ)_p_E .
If we take i = —1 in (15), then, after some simplification, we get the following
result:
x©  © d S —1) gmtn 3 B
Z Z (( )) + ( )1 Lgﬁ 2)(y) L%p 1)(y)
=0 n=0 ((9)m+n (@ = V)m (P)n
20 )
20) (3). (3) + 3
— A F _4D—G-1,2,2
2Dl2G43 1 1 1 11 1 Y
(59)7 (59) +35,p—1,5p, 5P+ 50
_d)__xy
(9) p(p—1)
(%d+%)’(%d+%)+%; D—-G-1 _2 2
x2pF2G4s | g 1 1 1 1 1 11 -4 Yy
(39+3). (9+3)+3p3p+3 3p+1;
Further, in (20), if we take
(i) D=1,G=0and d=p;
(i) D=2,G=0,d; =pand d2 =2p — 2,
we, respectively, obtain the following results:
S s —1)" m-+n
5o 5 Whnen G poan) 1pny
== (2= Dm (P)n
(21) - 2, 2 1Yy = 2,2
= oF1 [p—l; -z y:|p—10F1 {p; -z y}
=T(p—1) (2y)* 77 {Jp-2(22y) — Jp-1(22y)};
o [e’e] n .m4+n
Z Z (P)mtn (2p = 2)mgn (=1)" LE-D(y) LD (y)
m=0 n=0 (p - 1)771 (p)n
=1Fp Py —4a22y? | = 22y, Fy P=3g —4a?y?

bl bl

Il
—
—

I
[\
8

<
—
—~
—
+
.
8
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<
[
S~—
b~}
+
N
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Remark. It may be easily seen that the results (18), (19), (21) and (22) are
closely related to Exton’s results (10), (12), and (13), and (presumably) new.
Similarly, various other identities can also be obtained.

The results (14) and (15) for ¢ = 0, +1, ..., £5 are given in [10].
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