Browse > Article
http://dx.doi.org/10.5515/KJKIEES.2011.22.10.1005

Transient Analysis of General Dispersive Media Using Laguerre Functions  

Lee, Chang-Hwa (School of Electronic Engineering, Kyungpoon National University)
Kwon, Woo-Hyen (School of Electronic Engineering, Kyungpoon National University)
Jung, Baek-Ho (Dept. of Information and Communication Engineering, Hoseo University)
Publication Information
Abstract
In this paper, we present a marching-on-in-degree(MOD) finite difference method(FDM) based on the Helmholtz wave equation for analyzing transient electromagnetic responses in a general dispersive media. The two issues related to the finite difference approximation of the time derivatives and the time consuming convolution operations are handled analytically using the properties of the Laguerre functions. The basic idea here is that we fit the transient nature of the fields, the flux densities, the permittivity with a finite sum of orthogonal Laguerre functions. Through this novel approach, not only the time variable can be decoupled analytically from the temporal variations but also the final computational form of the equations is transformed from finite difference time-domain(FDTD) to a finite difference formulation through a Galerkin testing. Representative numerical examples are presented for transient wave propagation in general Debye, Drude, and Lorentz dispersive medium.
Keywords
Dispersive Medium; Laguerre Function; MOD; FDTD; Debye; Drude; Plasma; Lorentz Medium;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Yuan, A. De, T. K. Sarkar, J. Koh, and B. H. Jung, "Conditions for generation of stable and accurate hybrid TD-FD MoM solutions", IEEE Trans. Microwave Theory Tech., vol. 54, no. 6, pp. 2552-2563, Jun. 2006.   DOI   ScienceOn
2 I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products. Academic Press, New York, 1980.
3 A. D. Poularikas, The Transforms and Applications Handbook, 2nd Ed., CRC Press, 2000.
4 A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.
5 R. Luebbers, F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials", IEEE Trans. Electromagn. Compat., vol. 32, no. 3, pp. 222-227, Aug. 1990.   DOI
6 R. J. Luebbers, F. Hunsberger, and K. S. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma", IEEE Trans. Antennas Propag., vol. 39, no. 1, pp. 29-34, Jan. 1991.   DOI
7 R. J. Luebbers, F. Hunsberger, "FDTD for Nth-order dispersive media", IEEE Trans. Antennas Propag., vol. 40, no. 11, pp. 1297-1301, Nov. 1992.   DOI
8 D. F. Kelley, R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD", IEEE Trans. Antennas Propag., vol. 44, no. 6, pp. 792-797, Jun. 1996.   DOI
9 Y. S. Chung, T. K. Sarkar, B. H. Jung, and M. Salazar- Palma, "An unconditionally stable scheme for the finite-difference time-domain method", IEEE Trans. Microwave Theory Tech., vol. 51, no. 3, pp. 697-704, Mar. 2003.   DOI
10 B. H. Jung, T. K. Sarkar, "Analysis of transient electromagnetic scattering with plane wave incidence using MOD-FDM", Progress in Electromagnetics Research, PIER 77, pp. 111-120, 2007.   DOI
11 B. H. Jung et al., Time and Frequency Domain Solutions of EM Problems Using Integral Equations and a Hybrid Methodology, John Wiley & Sons, Inc., 2010.
12 Y. -S. Chung, T. K. Sarkar, S. Llorento-Romano, and M. Salazar-Palma, "Finite element time domain method using Laguerre polynomials", 2003 IEEE MTT-S Int., vol. 2, pp. 981-984, 2003.
13 J. Keilson, W. R. Nunn, "Laguerre transformation as a tool for the numerical solution of integral equations of convolution type", Appl. Math and Comput., vol. 5, pp. 313-359, 1979.