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THE POLYANALYTIC SUB-FOCK REPRODUCING KERNELS

WITH CERTAIN POSITIVE INTEGER POWERS

Hyeseon Kim

Abstract. We consider a closed subspace Ãα,m
q (C) of the Fock space

Aα,m
q (C) of q-analytic functions with the weight ϕ(z) = −α log |z|2+|z|2m

for any positive integer m. We obtain the corresponding reproducing
kernel KC

α,q,m(z, w) using the weighted Laguerre polynomials and the

Mittag-Leffler functions. Finally, we investigate the necessary and suffi-

cient condition on (α, q,m) such that KC
α,q,m(z, w) is zero-free.

1. Introduction

Let ϕ be a subharmonic function on C. The space L2
ϕ is the set of all mea-

surable functions f on C such that

∥f∥2ϕ :=

∫
C
|f(z)|2e−ϕ(z)dA(z) < ∞,

where dA is the Lebesgue area measure on C. Then the Fock space F 2
ϕ is defined

by F 2
ϕ := L2

ϕ∩O(C), where O(C) is the set of all entire functions. If ϕ(z) = |z|2,
then F 2

ϕ is the classical Fock space.

Recently one can see many important researches on polyanalytic functions.
A function f is called q-analytic if it satisfies the generalized Cauchy-Riemann
equation

∂qf

∂zq
(z) = 0 for all z ∈ C.

If f is q-analytic for some q, then f is called polyanalytic. It is easily seen that
1-analytic function is analytic. Many researches on the polyanalytic functions
have been made in [4, 7, 11, 17, 18, 23].
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In 2019, Hachadi and Youssfi [9] studied the Fock space F 2,q
ϕ which is the set

of all q-analytic functions with ∥f∥ϕ < ∞ when ϕ(z) = −α log |z|2 + |z|2 with

α > −1. Moreover, they obtained the formula of the reproducing kernel for F 2,q
ϕ

when ϕ(z) = −α log |z|2 + |z|2 with α > −1. Using the explicit formula, Park
investigated the zeros and asymptotic behavior of the polyanalytic reproducing
kernel in [16].

Let m be any positive integer. For any measurable function f on C, consider

∥f∥2α,m :=

∫
C
|f(z)|2dνα,m(z),

where

dνα,m(z) := cα,m|z|2αe−|z|2mdA(z) = cα,me−ϕ(z)dA(z), α > −1.

Here cα,m is a normalizing constant so that dνα,m(z) is a probability measure
on C. We now define a generalized Fock space Aα,m

q (C) by the space of all
q-analytic functions f on C with ∥f∥α,m < ∞.

In this paper we deal with a closed subspace Ãα,m
q (C) of Aα,m

q (C), which
is defined as the set of all elements of the form f(zm) for all f ∈ Aα,m

q (C).
If m = 1, then our closed subspace Ãα,m

q (C) of the space Aα,m
q (C) coincides

with the Fock space F 2,q
ϕ in [9]. Thus our result is a generalization of [9]. If α

tends to 0, then our generalized Fock space Aα,m
q (C) belongs to the weighted

Fock space studied in [19, 20]. Their weighted Fock space with a more general
condition on m has attracted considerable attention, due to the boundedness
and compactness issues of generalized Hankel operators in operator theory.
We expect that the results in this paper provide further research problems to
various directions on operator theory and complex analysis in higher dimension
of several variables. One can see the recent results in [5, 6, 12, 24].

In Section 2, we review the notations on the generalized Fock spaces and cer-
tain subspaces of them. We also explain the important properties on the orthog-
onal polynomials and the Mittag-Leffler functions. In Section 3, we compute

the polyanalytic reproducing kernel KC
α,q,m(z, w) for Ãα,m

q (C) when ϕ(z) =

−α log |z|2 + |z|2m for any α > −1 and positive integer m as our first main
result (see Theorem 3.2). If m ≥ 2, then we need the technical idea to express
the kernel in terms of the weighted Laguerre polynomials and the Mittag-
Leffler functions. In Section 4, we study the existence of zeros of the polyan-
alytic reproducing kernels using the properties of orthogonal polynomials. As
our second main result, we show that KC

α,q,m(z, w) is zero-free if and only if
(α, q,m) = (0, 1, 1) (see Theorem 4.3).

2. Notations and basic materials

In this section, we shall exploit the generalized Fock space and its certain
subspace which will be considered in this paper. We also prepare some notations
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and facts on orthogonal polynomials and the Mittag-Leffler functions. We follow
the notations introduced in [9].

2.1. Generalized polyanalytic Fock spaces

Let us recall that the generalized Fock space Aα,m
q (C) is defined as the space

of all q-analytic functions f on C with ∥f∥α,m < ∞. In this case, we have

dµ(t) =
m

Γ
(
α+1
m

) tαe−tmdt

and the moment sequence is given by

sd =

∫ ∞

0

tddµ(t) =
m

Γ
(
α+1
m

) ∫ ∞

0

td+αe−tmdt =
Γ
(
d+α+1

m

)
Γ
(
α+1
m

) .

For each pair (d, n) of non-negative integers and fixed positive integers m, q
such that nm ≤ q − 1, we denote P(n,m)(µ) by the subspace of L2(xddµ(x))
consisting of all polynomials of degree km (k = 0, 1, . . . , n) with the inner
product

⟨f, g⟩ :=
∫ ∞

0

f(x)g(x)xddµ(x).

Denote Qd,n,m(x, y) by the reproducing kernel for P(n,m)(µ).

Remark 2.1. If m = 1, then we have Qd,n,1(x, y) = Qd,n(x, y) (See (3.7)
in [9]). What is more, the construction of Qd,n in [9] involves the use of the
generalized Laguerre polynomials. Indeed, if we consider the polynomials of
degree at most nm in the definition of P(n,m)(µ), we should find the associated
orthogonal polynomials instead of the generalized Laguerre polynomials.

Similarly as in [9], we define a function

Fα,q,m(λ, x, y) :=

∞∑
d=0

λdQd,N,m(x, y) +

N∑
d=1

λ
d
Qd,N−d,m(x, y),(2.1)

where we use the notation N := ⌊ q−1
m ⌋ throughout the paper.

We recall that the space Ãα,m
q (C) is defined as the set of all elements of the

form f(zm) for all f ∈ Aα,m
q (C). Let KC

α,q,m(z, w) be the reproducing kernel for

the sub-Fock space Ãα,m
q (C). By the similar arguments in the proof of Theorem

4.3 in [9], we have the following.

Proposition 2.2. The reproducing kernel KC
α,q,m(z, w) is written by

KC
α,q,m(z, w) = Fα,q,m((zw)m, |z|2, |w|2).



450 Hyeseon Kim

2.2. Orthogonal polynomials

Suppose that w(x) satisfies w(x) > 0 on (a, b) with
∫ b

a
w(x)xndx < ∞ for

all n ∈ N. We define a sequence of orthogonal polynomials pn(x) of degree n
such that ∫ b

a

pn(x)pn′(x)w(x)dx = hnδn,n′ ,

where hn is a positive constant and δn,n′ is the Kronecker delta. At first we
introduce an important fact on the existence of zeros of all orthogonal polyno-
mials.

Lemma 2.3 ([21]). If {pn(x)}∞n=0 is a sequence of orthogonal polynomials
on the interval (a, b) with respect to the weight w(x), then each polynomial
pn(x) of degree n has exactly n distinct real simple zeros on (a, b).

As in [9], we shall utilize the weighted Laguerre polynomials L
(α)
n (x) which

are orthogonal with respect to w(x) = xαe−x when we study the polyanalytic

sub-Fock space. Precisely, L
(α)
n (x) satisfies∫ ∞

0

L(α)
n (x)L

(α)
n′ (x)xαe−xdx =

Γ (n+ 1 + α)

n!
δn,n′(2.2)

for any positive integers n and n′. Note that L
(α)
n (x)’s are polynomials of degree

n and weight α and satisfy the following second order differential equation

xy′′ + (α+ 1− x)y′ + ny = 0.

What is more, it is well-known that L
(α)
n (x) has the explicit form

L(α)
n (x) =

n∑
r=0

(−1)r
(
n+ α

n− r

)
xr

r!
.(2.3)

Before proceeding further, we now prepare some useful properties of the
weighted Laguerre polynomials.

Lemma 2.4 ([9]). The weighted Laguerre polynomials L
(α)
n (x) satisfy the

following.

(i) L(α)
n (x)L(α)

n (y) =
Γ(α+ n+ 1)

n!

n∑
r=0

(xy)rL
(α+2r)
n−r (x+ y)

r!Γ(α+ r + 1)

(ii)

s∑
n=r

L
(α)
n−r(x) = L

(α+1)
s−r (x)

(iii)

n∑
r=0

yr

r!
L
(β+r)
n−r (x) = L(β)

n (x− y)

(iv) L(α+β+1)
n (x+ y) =

n∑
k=0

L
(α)
n−k(x)L

(β)
k (y)



The polyanalytic sub-Fock reproducing kernels 451

2.3. The Mittag-Leffler functions

The Mittag-Leffler functions Eα,β(z) are defined by

Eα,β(z) :=

∞∑
k=0

zk

Γ(αk + β)

for all z ∈ C. For each fixed α, β, Eα,β(z) converges for all z ∈ C and is entire.
The function Eα,1(z) is a generalization of the exponential function which was
introduced in [14]. As a generalization of Eα,1(z), (two-parameter) function
Eα,β(z) was introduced in [2]. One can see the properties of the Mittag-Leffler
functions in [8] and the references therein. Note that E1,1(z) = ez has no zeros.
In fact, this is the very unusual case.

Lemma 2.5 ([8]). Let α, β > 0. Then Eα,β(z) has no zeros if and only if
α = β = 1. In this case, E1,1(z) = ez.

Denote the generalized Mittag-Leffler function E
(α)
k (z) by

E
(α)
k (z) :=

ez

k!

dk

dzk
(
zke−zE1,α(z)

)
,

where

E1,α(z) =

∞∑
k=0

zk

Γ(k + α)
.

Note that E
(1)
k (z) = ez for any k and E

(α)
0 (z) = E1,α(z) for any α. Indeed, the

generalized Mittag-Leffler function can be written as the infinite sum related
to the weighted Laguerre polynomials. In [9], one can see the following formula

E
(α)
k (z) =

∞∑
d=0

zd

Γ(d+ α)
L
(d)
k (z).(2.4)

The above formula can be derived by using the explicit form (2.3) of the
weighted Laguerre polynomial.

3. The polyanalytic reproducing kernel

In this section, we compute the reproducing kernel for Ãα,m
q (C). At first,

we need to find the subset of all polynomials which are orthogonal with respect

to the weight xαe−xm

for any positive integer m. Recall that L
(α)
n (x)’s are

orthogonal with respect to the weight xαe−x. As a counterpart of this fact, we
have the following lemma.
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Lemma 3.1. Let m be any positive integer. The polynomials L
(β)
n (xm)’s

are orthogonal with respect to the weight xd+αe−xm

and have degree mn in
the variable x, where

β :=
d+ α+ 1

m
− 1.(3.5)

Proof. By Lemma 2.4 (i), we know that L
(α)
n (x) are orthogonal with respect

to the weight xαe−x. If we use the change of variables by y = xm, then by (2.2),
we have∫ ∞

0

L(β)
n (xm)L

(β)
n′ (x

m)xd+αe−xm

dx =
1

m

∫ ∞

0

L(β)
n (y)L

(β)
n′ (y)y

βe−ydy

=
1

m

Γ(n+ 1 + β)

n!
δn,n′ .

Thus the polynomials L
(β)
n (xm)’s are orthogonal with respect to the weight

xd+αe−xm

, where β is defined as in (3.5).

By Lemma 3.1, we have

Qd,n,m(x, y) = m

n∑
k=0

k!

Γ(k + 1 + β)
L
(β)
k (xm)L

(β)
k (ym),(3.6)

where β is the same as defined in (3.5). By Proposition 2.2, the reproducing
kernel KC

α,q,m(z, w) is written by

KC
α,q,m(z, w) = Fα,q,m((zw)m, |z|2, |w|2),

where Fα,q,m is as in (2.1).

It is convenient to write

λ := (zw)m, x := |z|2, y := |w|2.(3.7)

Then we can write

Fα,q,m(λ, x, y) = S(1)
α,q,m + S(2)

α,q,m,

where

S(1)
α,q,m :=

∞∑
d=0

λdQd,N,m(x, y), and S(2)
α,q,m :=

N∑
d=1

λ
d
Qd,N−d,m(x, y).

Now we shall express S
(1)
α,q,m and S

(2)
α,q,m in terms of the weighted Laguerre

polynomials and the Mittag-Leffler functions.
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3.1. Computation of S
(1)
α,q,m

By (3.6), we have

S(1)
α,q,m = m

∞∑
d=0

λd
N∑

n=0

n!

Γ(β + n+ 1)
L(β)
n (xm)L(β)

n (ym)

= m

N∑
n=0

∞∑
d=0

n!λd

Γ(β + n+ 1)
L(β)
n (xm)L(β)

n (ym).

By Lemma 2.4 (i) and (ii), we have

S(1)
α,q,m = m

N∑
n=0

∞∑
d=0

n∑
r=0

λd(xmym)rL
(β+2r)
n−r (xm + ym)

r!Γ(β + r + 1)

= m

N∑
r=0

∞∑
d=0

λd(xmym)r

r!Γ(β + r + 1)

N∑
n=r

L
(β+2r)
n−r (xm + ym)

= m

N∑
r=0

∞∑
d=0

λd(xmym)r

r!Γ(β + r + 1)
L
(β+2r+1)
N−r (xm + ym).

Here is the decisive step for this generalized polyanalytic Fock space. For
any non-negative integer d, there exist unique non-negative integers c and e
such that

d = mc+ e with 0 ≤ e ≤ m− 1.

Then we have

∞∑
d=0

f(d) =

m−1∑
e=0

∞∑
c=0

f(mc+ e)

for any function f of single variable. Note that by (3.5) it follows that

β = c+
e+ α+ 1

m
− 1.(3.8)

Then a straightforward computation shows that

S(1)
α,q,m = m

N∑
r=0

m−1∑
e=0

λe(xmym)r

r!

∞∑
c=0

(λm)c

Γ
(
c+ r + e+α+1

m

)L(c+2r+ e+α+1
m )

N−r (xm + ym)

= m

N∑
r=0

m−1∑
e=0

λe(λλ)r

r!

∞∑
c=r

(λm)c−r

Γ
(
c+ e+α+1

m

)L(c+r+ e+α+1
m )

N−r (xm + ym)

= m

N∑
r=0

m−1∑
e=0

λe+r−mrλ
r

r!

∞∑
c=r

(λm)c

Γ
(
c+ e+α+1

m

)L(c+r+ e+α+1
m )

N−r (xm + ym),
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where we assumed zw ̸= 0. If zw = 0, then it is easy to see that

S(1)
α,q,m =

m

Γ
(
α+1
m

)L(α+1
m )

N (xm + ym).(3.9)

Similarly as in [9], we divide S
(1)
α,q,m into two parts as

S(1)
α,q,m = S(1,1)

α,q,m − S(1,2)
α,q,m,

where

S(1,1)
α,q,m := m

N∑
r=0

m−1∑
e=0

λe+r−mrλ
r

r!

∞∑
c=0

(λm)c

Γ
(
c+ e+α+1

m

)L(c+r+ e+α+1
m )

N−r (xm + ym),

S(1,2)
α,q,m := m

N∑
r=0

m−1∑
e=0

λe+r−mrλ
r

r!

r−1∑
c=0

(λm)c

Γ
(
c+ e+α+1

m

)L(c+r+ e+α+1
m )

N−r (xm + ym).

By Lemma 2.4 (iii) and (iv), we have

S(1,1)
α,q,m =m

m−1∑
e=0

λe
∞∑
c=0

(λm)c

Γ
(
c+ e+α+1

m

) N∑
r=0

λr−mrλ
r

r!
L
(c+r+ e+α+1

m )
N−r (xm + ym)

=m

m−1∑
e=0

λe
∞∑
c=0

(λm)c

Γ
(
c+ e+α+1

m

)L(c+ e+α+1
m )

N (xm + ym − λ1−mλ)

=m

m−1∑
e=0

λe
∞∑
c=0

(λm)c

Γ
(
c+ e+α+1

m

) N∑
k=0

L
(c)
k (λm)L

( e+α+1
m −1)

N−k (xm + ym − λm − λ1−mλ)

=m

m−1∑
e=0

λe
N∑

k=0

L
( e+α+1

m −1)
N−k (xm + ym − λm − λ1−mλ)

∞∑
c=0

(λm)cL
(c)
k (λm)

Γ(c+ e+α+1
m )

.

From (3.7), one can easily obtain that

xm + ym − λm − λ1−mλ = |z|2m + |w|2m − (zw)m
2

− (zw)m(1−m)(zw)m.

By (2.4), we have

∞∑
c=0

(λm)cL
(c)
k (λm)

Γ
(
c+ e+α+1

m

) = E
( e+α+1

m )
k (λm).

It follows that

S(1,1)
α,q,m = m

m−1∑
e=0

λe
N∑

k=0

L
( e+α+1

m −1)
N−k (τ)E

( e+α+1
m )

k (λm),(3.10)

where τ := |z|2m + |w|2m − (zw)m
2 − (zw)m(1−m)(zw)m. Note that if m = 1,

then τ = |z − w|2.
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On the other hand, we have

S(1,2)
α,q,m = m

m−1∑
e=0

λe
N−1∑
c=0

N∑
r=c+1

λr−mrλ
r

r!

(λm)c

Γ
(
c+ e+α+1

m

)L(c+r+ e+α+1
m )

N−r (xm + ym)

= m

m−1∑
e=0

λe
N−1∑
d=0

N∑
r=d+1

λr−mrλ
r

r!

(λm)d

Γ
(
d+ e+α+1

m

)L(d+r+ e+α+1
m )

N−r (xm + ym)

= m

m−1∑
e=0

λe
N∑
r=1

r−1∑
d=0

λr−mrλ
r

r!

(λm)d

Γ
(
d+ e+α+1

m

)L(d+r+ e+α+1
m )

N−r (xm + ym).

It follows that

S(1,2)
α,q,m = m

N∑
r=1

r−1∑
d=0

m−1∑
e=0

λmd+e+r−mrλ
r

r!Γ
(
d+ e+α+1

m

)L(d+r+ e+α+1
m )

N−r (xm + ym).(3.11)

3.2. Computation of S
(2)
α,q,m

Now we compute S
(2)
α,q,m. By Lemma 2.4 (i), we have

S(2)
α,q,m = m

N∑
d=1

λ
d
N−d∑
n=0

n!

Γ(β + n+ 1)
L(β)
n (xm)L(β)

n (ym)

= m

N∑
d=1

λ
d
N−d∑
n=0

n∑
r=0

(xmym)rL
(β+2r)
n−r (xm + ym)

r!Γ(β + 1 + r)

= m

N−1∑
r=0

N−1∑
n=r

N−n∑
d=1

λrλ
d+r

L
(β+2r)
n−r (xm + ym)

r!Γ(β + 1 + r)
.

Recall that β = d+α+1
m − 1. If we write d′ = d+ r and drop the prime, then

S(2)
α,q,m = m

N−1∑
r=0

N−1∑
n=r

N−n+r∑
d=1+r

λrλ
d

r!Γ
(
d−r+α+1

m + r
)L( d−r+α+1

m −1+2r)
n−r (xm + ym).

If we exchange the order of the summation and apply Lemma 2.4 (ii), then

S(2)
α,q,m = m

N−1∑
r=0

N∑
d=1+r

N+r−d∑
n=r

λrλ
d

r!Γ
(
d−r+α+1

m + r
)L( d−r+α+1

m −1+2r)
n−r (xm + ym)

= m

N−1∑
r=0

N∑
d=1+r

λrλ
d

r!Γ
(
d−r+α+1

m + r
)L( d−r+α+1

m +2r)
N−d (xm + ym).

If we exchange r and d, then we have

S(2)
α,q,m = m

N−1∑
d=0

N∑
r=1+d

λdλ
r

d!Γ
(
r−d+α+1

m + d
)L( r−d+α+1

m +2d)
N−r (xm + ym).
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It follows that

S(2)
α,q,m = m

N∑
r=1

r−1∑
d=0

λdλ
r

d!Γ( r−d+α+1
m + d)

L
( r−d+α+1

m +2d)

N−r (xm + ym).(3.12)

3.3. Forms of the polyanalytic reproducing kernels

From the previous subsections, we have

KC
α,q,m(z, w) = S(1,1)

α,q,m − S(1,2)
α,q,m + S(2)

α,q,m.(3.13)

Combining (3.9), (3.10), (3.11), (3.12) with (3.13), we get the following
theorem.

Theorem 3.2. Let α > −1 and q,m ∈ N. If zw ̸= 0, then the reproducing
kernel is given by

KC
α,q,m(z, w) =m

m−1∑
e=0

(zw)me
N∑

k=0

L
( e+α+1

m −1)
N−k (τ)E

( e+α+1
m )

k ((zw)m
2

)

+m

N∑
r=1

r−1∑
d=0

[
(zw)md(zw)mr

d!Γ
(
r−d+α+1

m + d
)L( r−d+α+1

m +2d)
N−r (|z|2m + |w|2m)

−
m−1∑
e=0

(zw)m
2d+me+mr−m2r(zw)mr

r!Γ
(
d+ e+α+1

m

) L
(d+r+ e+α+1

m )

N−r (|z|2m + |w|2m)

]
,

where τ := |z|2m + |w|2m − (zw)m
2 − (zw)m(1−m)(zw)m. Moreover, if zw = 0,

then

KC
α,q,m(z, w) =

m

Γ
(
α+1
m

)L(α+1
m )

N (xm + ym).

Remark 3.3. If m = 1, then by (2.4),

KC
α,q,1(z, w) =

q−1∑
k=0

L
(α)
q−1−k(|z − w|2)E(α+1)

k (zw)

+

q−1∑
r=1

r−1∑
d=0

[
(zw)d(zw)r

d!Γ (r + α+ 1)
L
(r+α+1+d)
q−1−r (|z|2 + |w|2)

− (zw)d(zw)r

r!Γ (d+ α+ 1)
L
(d+r+α+1)
q−1−r (|z|2 + |w|2)

]
.

This was already proved in [9]. Since S
(1,2)
0,q,1 = S

(2)
0,q,1, it was already known that

KC
0,q,1(z, w) = S

(1,1)
0,q,1 = ezw

q−1∑
k=0

L
(0)
q−1−k(|z − w|2) = ezwL

(1)
q−1(|z − w|2).(3.14)
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However, if m ≥ 2, then S
(1,2)
0,q,m ̸= S

(2)
0,q,m. For example, if N = 1, then

S
(1,2)
0,q,m = mλ

m−1∑
e=0

λe+1−m

Γ
(
e+1
m

) and S
(2)
0,q,m =

mλ

Γ
(

2
m

) .
Thus one can see that S

(1,2)
0,q,m = S

(2)
0,q,m only when m = 1.

4. Zeros of the polyanalytic reproducing kernels

In this final section, we discuss the zeros of KC
α,q,m(z, w). The problem of

determining the existence of zeros of the reproducing kernel is called the Lu
Qi-Keng problem suggested in [13]. There are so many results on the Bergman
kernel for bounded domains. We refer to the reader to [1, 3, 10, 15, 16, 22] and
the references therein. As an application of Theorem 3.2, we shall characterize
the condition of (α, q,m) such that the kernel has zeros.

Example 4.1. From (3.14), we have KC
0,q,1(z, w) = ezwL

(1)
q−1(|z − w|2). By

the explicit form (2.3), we have

L
(1)
0 (x) = 1.

L
(1)
1 (x) = −x+ 2,

L
(1)
2 (x) =

1

2
x2 − 3x+ 3,

L
(1)
3 (x) = −1

6
x3 + 2x2 − 6x+ 4.

Thus KC
0,1,1(z, w) = ezw has no zeros. But, KC

0,2,1(z, w) = ezw(2−|z−w|2) has
zeros when |z − w| =

√
2. And also KC

0,2,1(z, w) and KC
0,3,1(z, w) have zeros,

since L
(1)
2 (x) = 0 and L

(1)
3 (x) = 0 also have positive real roots.

Example 4.2. Consider (q,m) = (2, 2). Then KC
α,2,2(z, w) = S

(1,1)
α,2,2 −

S
(1,2)
α,2,2 + S

(2)
α,2,2 and N = 0. By (3.10), (3.11), (3.12), we have

S
(1,1)
α,2,2 = 2E

(α+1
2 )

0 ((zw)4) + 2(zw)2E
(α+2

2 )
0 ((zw)4)

S
(1,2)
α,2,2 = S

(2)
α,2,2 = 0.

Since E
(α)
0 (x) = E1,α(x), we have

S
(1,1)
α,2,2 = 2E1,α+1

2
((zw)4) + 2(zw)2E1,α+2

2
((zw)4)

If we use the duplication formula Ea,b(z) = E2a,b(z
2) + zE2a,b+a(z

2), then

KC
α,2,2(z, w) = S

(1,1)
α,2,2 = 2E 1

2 ,
α+1
2
((zw)2),

which has zeros for any α > −1 by Lemma 2.3.
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Indeed, one can characterize this phenomena by using Lemma 2.3.

Theorem 4.3. KC
α,q,m(z, w) has no zeros if and only if (α, q,m) = (0, 1, 1).

Proof. If N = 0, then S
(1,2)
α,q,m = S

(2)
α,q,m = 0 for any α, q,m. By Theorem 3.2,

it follows that

KC
α,q,m(z, w) = S(1,1)

α,q,m = m

m−1∑
e=0

(zw)meE
( e+α+1

m )
0 ((zw)m

2

).

Since E
(α)
0 (x) = E1,α(x) for any α, we have

KC
α,q,m(z, w) =m

m−1∑
e=0

(zw)me
∞∑
c=0

(zw)m
2c

Γ
(
c+ e+α+1

m

)
=m

m−1∑
e=0

∞∑
c=0

((zw)m)e
((zw)m)mc

Γ
(
c+ e+α+1

m

)
=m

∞∑
ℓ=0

((zw)m)ℓ

Γ
(
ℓ+α+1

m

)
=mE 1

m ,α+1
m

((zw)m).

It follows that KC
α,q,m(z, w) has no zeros if and only if α = 0 and m = 1 by

Lemma 2.5.

Let N ≥ 1. By Theorem 3.2, we have

KC
α,q,m(z, 0) =

m

Γ(α+1
m )

L
(α+1

m )

N (|z|2m).

Thus we conclude that KC
α,q,m(z, 0) has zeros for any α > −1 and m ∈ N

by Lemma 2.3.
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