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Abstract A least-squares identification method is studied that estimates a finite number
of coefficients in the series expansion of a transfer function, where the expansion is in terms of
recently introduced generalized basis functions. We will expand and generalize the orthogonal
functions as basis functions for dynamical system representations. To this end, use is made of
balanced realizations as inner transfer functions. The orthogonal funcitions can be considered
as generalizations of, for example, the pulse functions, Laguerre functions, and Kautz functions,
and give rise to an alternative series expansion of rational transfer functions. We show that
the Laplace transform of the expansion for some sets Wx(z) is equivalent to a series expansion.
Techniques based on this result are presented for obtaining the coefficients ¢, as those of a
series. One of their important properties is that, if chosen properly, they can substantially
increase the speed of convergence of the series expansion. This leads to accurate approximate
models with only a few coefficients to be estimated. The set of Kautz functions is discussed in
detail and, using the power-series equivalence, the truncation error is obtained.
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1 Introduction with {wg}kr=12,. the expansion coefficients. The

orthonormality of the basis is reflected by the prop-
The use of orthogonal basis functions for the erty that

Hilbert space of stable systems has a long history

in the modelling and identification of dynamical

systems. The main part of this work dates back to b . _

the classical work of Lee(1933) and Wiener(1949), / fn(2) fn(2)dz = { 1, if m=mn,

which is summarized in Lee(1960). a 0, f m#n.

Given the fact that every stable system has a

unique series expansion in terms of a pre-chosen (3)

basis, a model representation in terms of a finite-

length series expansion can serve as an approxi- When the basis functions satisfy the first condi-

mate model, where the coeflicients of the series ex-  tion, they are said to be normalized; and, when

pansion can be estimated from input-output data. they satisfy the second condition, they are said to

Consider for example a stable system G(z), written ~ be orthogonal. A model of the system G(z) can be

as approximated by a finite-length series expansion
6(2) =Y gue™* () R
k=t G(z) =) e fi(2) (4)
k=1

with {gk}x=0,1,2,. the sequence of Markov parame-
ters. Let {fx(2)}x=0,1,2,- be an orthonormal basis
for the set of systems. Then there exists a unique
series expansion

where the accuracy of the model will be essentially

dependent on the choice of basis functions fi(2).

Note that the choice fx(z) = 2~% corresponds to

oo the use of so-called FIR (finite impulse response)

G(z) = Z wy fr(2), (2) models. Since the accuracy of the models is limited
k=1 by the basis functions.
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2 Kautz Function

The problem of orthogonalizing a set of continu-
ous time exponential functions has been elegantly
solved in [1]. The key idea is to determine the cor-
responding Laplace transforms, which have very
simple structures.

The sequence of functions {¥r(z)} is determined
as follows

Upp1(2) = CP(1 - o) r®(z)  (5)

Uoi(2) = CH (1 - aP)r®(z)  (6)
k—1

[[(1-8;2)(1 - 82)

7=1

¥ (z) =

| L

(z = Bj)(= = B7)

i=1

c® _ (18D - B2 (1 - Bir)

\ (1 + (a§)2) (1 + iBy) - 20 (Bi + 67)
c = (1- 831 - 5%)(1 - BiBp)

\ (@ + (@?)2) (1 + BrBE) — 20 (Bx + B7)

(1+a{7af)(1+ 8B1) - (af )+a(k))(ﬂk+ﬂi)=(())

7
Here ;s are complex numbers such that |G| <
1, and a(k), ag) are restricted by the condition
(7). The functions {¥i(2)}k=1,2,... will be called
the discrete Kautz functions. Another special case
is for B = (. For this case one can take

49 1+ Bp* *)

Q=g @ =0
and thus
—c2(z—-b
Wokr—1 (Z) zmzl)z —) c
—c2? +b(c— )z +1]*
Z2+blc-1)z—c
= Ka-1(2)Gs(2)*
Uo(z) = V(1 =c)(1-0?%)

224+b(c—1z—-c
—cz? +blc~1)z+1 k-1
22+ b(c-1)z—c
= Ku(2)Gy(2)*

[l <1, Je|<1
where
V1-c?(z-b)
Kaea(z) = 22+b(c-1)z—c
_ Ya-)(1-¥)
Kau(z) = 224+ b(c—1z—c
Go(z) = —cz2+blc-1)z+1

22+ bc—1)z—¢

a?f)i b= (ﬂ +8%)/(1+ BB*), ¢ = —Bp".

Since

and a are not unique, several other sets of
{\Ilk(z)} are possible.
Denote
_ [ Kak-1(2) ] k
we = [ 129 e

Vv1-—c? [ z—b
22 +b(c—1z—c| V1I-b2

] Gy (2)*

3 Identification of expansion co-
efficients

Using Laguerre and Kautz function a practical
parameter identification method for linear time-
invariant systems is introduced. System identifica-
tion deals with the problem of finding an estimate
of G(z) from observations of {y(t),u(t)}s=1..N-
The identification problem simplifies to a linear re-
gression estimation problem if the model is linear-
in-the-parameters, and can be represented by

=Y wifu(2) (8)
k=1

where {fx(z)} is a set of given basis functions
and {wy} are the unknown model parameters. If
fae-1(2) correspond to {Vi(2)}, we call this
fax(2)

model a Kautz model. The least squares method
can now be applied to estimate the model param-

eters
GT: ('wl,wg,-'-,wn) . (9)

The input/output relation can be written in the
linear regression form

y(t) = 2z 7o (10)
where

zf = [y (t), Ba(t), -

) Un (2)]

uk(t) = fr(2)u(t),
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Let
ZT= [Zm,*",ZN], yT = [y(tO),,y(N)]

Then, the least squares estimate of § minimizes the
loss function :

J = ii(y(t%zl’f))2
N t

t=to

= S-20T(y-20) (1)

The solution of t;his quadratic optimization prob-
lem is ’

Oy = (272)1 77y (12)
where
T 1 X -
ztz = Nt; zzi,
=to
1 N
Zy = 5 32 (). (13)

t=tg

The value of tg depends on how the effects of un-
known initial conditions are treated. For large N,
the effects of to will be negligible.

4 Simulation Example

We give a simple example to illustrate the advan-
tage of using Kautz models for second order reso-
nant systems. Consider a continuous time transfer
function

GO(s) = ——

T 2402541 (14)

with resonant frequency wo = 1 and damping 0.1.
This system is sampled using a zero-order hold
with sampling period T = 0.5. The FIR, approx-
imation is shown in Fig. 1, and 2. The second-
order Kautz model approximation, n = 2, is given
in Fig.3. The Kautz approximation of order 7 in
shown in Fig.4.

5 Conclusion

In this paper we considered an estimation method
of transfer function G(z) using basis functions ex-
pansion. We illustrated by numerical example that
the presented method of identification can be per-
formed with good accuracy using a rather smaller
numbers of expansion terms than that for the case
where the FIR model is used.
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Figure 1 : Solid line-true system,dashed line-FIR
model of order 50
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model of order 100
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Figure 3 : Solid line-true system,dashed line-Kautz
model of order 2
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