• 제목/요약/키워드: Jacobi forms

검색결과 34건 처리시간 0.024초

EXACT FORMULA FOR JACOBI-EISENSTEIN SERIES OF SQUARE FREE DISCRIMINANT LATTICE INDEX

  • Xiong, Ran
    • 대한수학회보
    • /
    • 제57권2호
    • /
    • pp.481-488
    • /
    • 2020
  • In this paper we give an exact formula for the Fourier coefficients of the Jacobi-Eisenstein series of square free discriminant lattice index. For a special case the discriminant of lattice is prime we show that the Jacobi-Eisenstein series corresponds to a well known Eisenstein series of modular forms.

A Note on Maass-Jacobi Forms

  • YANG, JAE-HYUN
    • Kyungpook Mathematical Journal
    • /
    • 제43권4호
    • /
    • pp.547-566
    • /
    • 2003
  • In this paper, we introduce the notion of Maass-Jacobi forms and investigate some properties of these new automorphic forms. We also characterize these automorphic forms in several ways.

  • PDF

Survey of the Arithmetic and Geometric Approach to the Schottky Problem

  • Jae-Hyun Yang
    • Kyungpook Mathematical Journal
    • /
    • 제63권4호
    • /
    • pp.647-707
    • /
    • 2023
  • In this article, we discuss and survey the recent progress towards the Schottky problem, and make some comments on the relations between the André-Oort conjecture, Okounkov convex bodies, Coleman's conjecture, stable modular forms, Siegel-Jacobi spaces, stable Jacobi forms and the Schottky problem.

ON SOME RESULTS OF BUMP-CHOIE AND CHOIE-KIM

  • Hundley, Joseph
    • 대한수학회보
    • /
    • 제50권2호
    • /
    • pp.559-581
    • /
    • 2013
  • This paper is motivated by a 2001 paper of Choie and Kim and a 2006 paper of Bump and Choie. The paper of Choie and Kim extends an earlier result of Bol for elliptic modular forms to the setting of Siegel and Jacobi forms. The paper of Bump and Choie provides a representation theoretic interpretation of the phenomenon, and shows how a natural generalization of Choie and Kim's result on Siegel modular forms follows from a natural conjecture regarding ($g$, K)-modules. In this paper, it is shown that the conjecture of Bump and Choie follows from work of Boe. A second proof which is along the lines of the proof given by Bump and Choie in the genus 2 case is also included, as is a similar treatment of the result of Choie and Kim on Jacobi forms.

REAL HYPERSURFACES IN A NON-FLAT COMPLEX SPACE FORM WITH LIE RECURRENT STRUCTURE JACOBI OPERATOR

  • Kaimakamis, George;Panagiotidou, Konstantina
    • 대한수학회보
    • /
    • 제50권6호
    • /
    • pp.2089-2101
    • /
    • 2013
  • The aim of this paper is to introduce the notion of Lie recurrent structure Jacobi operator for real hypersurfaces in non-flat complex space forms and to study such real hypersurfaces. More precisely, the non-existence of such real hypersurfaces is proved.

COMPUTATIONS OF SPACES OF PARAMODULAR FORMS OF GENERAL LEVEL

  • Breeding, Jeffery II;Poor, Cris;Yuen, David S.
    • 대한수학회지
    • /
    • 제53권3호
    • /
    • pp.645-689
    • /
    • 2016
  • This article gives upper bounds on the number of Fourier-Jacobi coefficients that determine a paramodular cusp form in degree two. The level N of the paramodular group is completely general throughout. Additionally, spaces of Jacobi cusp forms are spanned by using the theory of theta blocks due to Gritsenko, Skoruppa and Zagier. We combine these two techniques to rigorously compute spaces of paramodular cusp forms and to verify the Paramodular Conjecture of Brumer and Kramer in many cases of low level. The proofs rely on a detailed description of the zero dimensional cusps for the subgroup of integral elements in each paramodular group.