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ON SOME RESULTS OF BUMP-CHOIE AND CHOIE-KIM

Joseph Hundley

Abstract. This paper is motivated by a 2001 paper of Choie and Kim
and a 2006 paper of Bump and Choie. The paper of Choie and Kim
extends an earlier result of Bol for elliptic modular forms to the setting
of Siegel and Jacobi forms. The paper of Bump and Choie provides
a representation theoretic interpretation of the phenomenon, and shows
how a natural generalization of Choie and Kim’s result on Siegel modular
forms follows from a natural conjecture regarding (g,K)-modules. In this
paper, it is shown that the conjecture of Bump and Choie follows from
work of Boe. A second proof which is along the lines of the proof given
by Bump and Choie in the genus 2 case is also included, as is a similar
treatment of the result of Choie and Kim on Jacobi forms.

1. Introduction

The purpose of this note is to give a representation-theoretic interpretation
for the results of Choie and Kim [7], continuing a program begun by Bump
and Choie in [6]. The motivation for [7] is to generalize a certain result of
Bol [4] from elliptic modular forms to Siegel and Jacobi forms. An interesting
consequence is that the (r + 1)st derivative of a meromorphic modular form
of weight −r is a meromorphic modular form of weight r + 2. This is striking
because no other derivative of the same modular form will be modular. More
precisely, each derivative is expressed as a linear combinations of forms of vari-
ous weights, only the (r+1)st derivative has the property that the contributions
from all weights save one are zero. As explained in [6], it is possible to consider
instead a slightly different differential operator (the Maass raising operator)
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such that all derivatives are automorphic forms, but none save the (r + 1)st is
meromorphic.

The results of [7] extend Bol’s result to Siegel modular forms as well as
Jacobi forms, subject to certain restrictions. For the Siegel case, one considers
a meromorphic Siegel modular form of genus n and weight −r + n−1

2 . The

usual derivative d
dz of a modular form in the upper half plane is replaced by

the “determinant differential operator” in the Siegel case. Just as before, one
finds that the (r + 1)st iterate of this operator, yields a meromorphic Siegel or
Jacobi form of weight r + 2 + n−1

2 . Further one does not get a meromorphic
modular form for any derivative other than the (r + 1)st. The Jacobi case is
similar. Let us refer to this as “recovery at r + 1”.

The Siegel case is considered from another perspective in [6], and the impor-
tant task of translating the phenomenon into a representation-theoretic context

is carried out. It is explained how certain vectors in (sp(2n,C), Ũ(n))-modules
generalize meromorphic modular forms of negative weight, and how a con-
jecture (Conjecture 2 of [6]) would explain and also generalize the natural
extension (Conjecture 1 of [6]) of recovery at r + 1.

The goals of this paper are as follows: first, to prove Conjecture 2 of [6];
second, to generalize Theorem 3 of [6]; third, to give a similar treatment of the
Jacobi case of [7].

Two proofs of Conjecture 2 of [6] are given. The first, short proof, is based on
deducing the conjecture from general results of [2], which apply to any semisim-
ple complex Lie algebra. Since the main program is to make the representation-
theoretic explanations for the “recovery” behavior of Siegel and Jacobi modular
forms as transparent as possible, a detailed proof for the case sp(2n,C) is in-
cluded. A second, longer, proof, along the lines of that given in [6] for the case
n = 2 is then presented.

The generalization of Theorem 3 of [6] is given in Section 5. It helps to
explain why, regardless of the the genus n, one is able to prove Conjecture
2 using only the Laplace-Beltrami operator, without considering any other
elements of the center of the universal enveloping algebra.

In Section 6, notation for the Jacobi case is introduced. The main theorem in
the Jacobi case, Theorem 7.2, is then given in Section 7. It generalizes Corollary
3.6 of [7]. The proof is based on extending Jacobi forms to functions on a large
Siegel upper half-space and applying results from the Siegel case. In Section
8, Theorem 8.7, which may be regarded as a Jacobi version of Conjecture 2
is stated and proved. In principle, this result could be the basis for a second
proof of Theorem 7.2, but it’s not entirely trivial: like Conjecture 2 of [6],
Theorem 8.7 deals with certain elements of the universal enveloping algebra
which correspond to Maass’s raising operators. The relationship between these
raising operators and the heat operator and determinant differential operator
considered in [7] is somewhat indirect. In the Siegel case, the relationship is
given in Lemma 7.3, which relies on results of Harris and Maass. In order
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to deduce Theorem 7.2 from Theorem 8.7, some Jacobi version of this lemma
would be required. Even though no second proof of Theorem 7.2 is obtained,
it seems that Theorem 8.7, and particularly its proof, may be of sufficient
independent interest to warrant inclusion. The proof is based on embedding a
smaller symplectic Lie algebra in the universal enveloping algebra of the Jacobi
Lie algebra in a nonstandard way, and applying results from the Siegel case to
this subalgebra.

2. Reduction

As mentioned above, this paper attempts to continue a program begun in
[6]. Accordingly, we make free use of notation and terminology introduced in
[6], and generally begin not at the beginning, but where [6] leaves off.

To briefly recall the statement of Conjecture 2, recall that a (gC, K̃)-module

is a vector space equipped with actions of gC := sp(2n,C) and of K̃ = Ũ(n),
subject to certain compatibility conditions described on [6], pp. 116–117. Here

Ũ(n) is the preimage of the unitary group U(n) ⊂ Sp(2n,R) in the metaplectic

double cover S̃p(2n,R) of Sp(2n,R).
Let (π, V ) be such an object. A vector v ∈ V is said to be semispherical if

the action of K̃ preserves the one dimensional subspace v spans. In this case

K̃ acts on v by a character. Following [6], p. 121, we denote this character by

detk, with k being a half integer. The vector v is said to be holomorphic if
it is semispherical and, in addition, annihilated by certain differential opera-
tors π(LX) described on [6], p. 120. Rather than the determinant differential
operator, one works with a different, but closely related differential operator,
namely the Maass raising operator M+ defined on p. 123 of [6]. Conjecture 2
of [6] then states that if v is a holomorphic vector of weight −r + n−1

2 , then

M r+1
+ v is holomorphic of weight r + 2 + n−1

2 .

In order to prove this, it is useful to simply forget the K̃-module structure,
and regard V as a module over the ring U(gC). Let k denote the Lie algebra

of K̃. Then the compatibility conditions of a (gC, K̃)-module force k to act on
the span of v by a character, π(X)v = kTr(X)v, where k ∈ 1

2Z is the weight,
and Tr(X) denotes the trace of X ∈ k, regarded as an element of gl(n,C),
as opposed to sp(2n,R). To be precise, let c be the Cayley transform, as on

[6], p. 120. Then for X ∈ k, the matrix cXc−1 is of the form
(

X0

X0

)
, with

X0 ∈ su(n) and Tr(X) denotes the trace of X0. Note that X0 = −⊤X0, for
X0 ∈ su(n). It follows by linearity that the vector v0 := π(c)v satisfies

(Weight k) π

(
X

− ⊤X

)
v0 = kTr(X)v0 ∀X ∈ gl(n,C).

Moreover, by holomorphicity, (cf. the definition of LX on [6], p. 120)

(Hol) π

(
0 0
X 0

)
v0 = 0, ∀X ∈ Matn(C), symmetric.
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Moreover, if V is a (gC, K̃)-module, and v0 ∈ V satisfies (Weight k), then

it follows from the compatibility conditions for a (gC, K̃)-module that v0 is
semispherical of weight k. Hence, Conjecture 2 of [6] reduces to the following
proposition.

Proposition 2.1. Let V be a U(gC) module, and suppose that V contains a

vector v0 satisfying (Hol) and (Weight −r+ n−1
2 ). Then M̂ r+1

+ v0 satisfies (Hol)

and (Weight r + 2+ n−1
2 ). Moreover, if k 6= r + 1, then M̂k

+v0 does not satisfy

(Hol), where M̂+ = det R̂Xij
, with the same convention as on p. 123 of [6].

3. Short proof of Proposition 2.1

One may give a short proof of Proposition 2.1 using a modest refinement
of Theorem 4.4 of [2]. Thus, take g now to be a finite dimensional complex
semisimple Lie algebra as in [2], and let p be a Hermitian symmetric parabolic
subalgebra. Write p = u+ ⊕ r where u+ is the unipotent radical of p and r is
reductive, and write r = gS + h, where gS is the derived subalgebra and h is
a Cartan subalgebra. Let λ : h → C be a linear mapping which is trivial on
h∩gS , and let pr be the natural projection p → h/(h∩gS). One considers those
vectors v in a U(g)-module V which satisfy the following natural generalization
of (Hol) and (Weight k):

(Hol wt λ) Xv = λ(pr(X))v (∀X ∈ p).

Then one has, from [2], a necessary and sufficient condition for a representation
which is generated by a vector which satisfies (Hol wt λ) to contain a vector
which satisfies (Hol wt λ′), where λ′ 6= λ. In order to state this condition, one
needs a bit more notation. First, let u− denote the nilpotent radical of the
parabolic subalgebra opposite p, so that g = p⊕ u−, and let ρS equal half the
sum of the roots of h in u+. Next, let α denote the unique noncompact simple
root of h, let gα be the α-eigenspace of h in g, let hα denote the unique element
of [gα, gα] with α(hα) = 2. Then the space h/(h ∩ gS) is one dimensional and
spanned by the image of hα. Let ωα : h → C be the unique element which is
trivial on (h ∩ gS) and sends hα to 1.

Theorem 3.1. Keep the notation of the previous paragraph and let λ, λ′ :
h/(h ∩ gS) → C be two linear maps. The following are equivalent.

(1) There exists a U(g)-module V, which is generated by a vector e which

satisfies (Hol wt λ) and contains a second vector e′ satisfying (Hol wt
λ′),

(2) There is a nontrivial U(g)-module map from the scalar generalized

Verma module U(g)⊗U(p)Ceλ′ to the scalar generalized Verma module

U(g)⊗U(p) Ceλ,

(3) The algebra of gS-invariants in U(u−) is of the form C[ur], and there

is a nonnegative integer k such that

λ = (k − ρS(hα))ωα, λ′ = (−k − ρS(hα))ωα.
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Moreover, when the three equivalent conditions hold, the vector e′ mentioned

in (1) is a scalar multiple of uk
r . e, and the map mentioned in (2) sends 1⊗ eλ′

to a scalar multiple of ur
k ⊗ eλ (Note that this map is completely determined by

its value on 1⊗ eλ′).

Sketch of proof. The statement given above goes slightly beyond what is stated
in [2], but the arguments in [2] prove it. Indeed, it is clear that (2) =⇒ (1),
for if φ : U(g) ⊗U(p) Ceλ′ → U(g) ⊗U(p) Ceλ is any nonzero map, then (1)
is satisfied with V = U(g) ⊗U(p) Ceλ, e = eλ and e′ = φ(eλ′ ). Further, if V
is any U(g)-module generated by a vector e which satisfies (Hol wt λ), then
V = U(u−)e. Arguing as on p. 796 of [2], if u ∈ U(u−) is such that X . (u . e) =
λ′(pr(X)), (∀X ∈ r), then it follows that u ∈ U(u−)gS , and ad(X)u = (λ′ −
λ)(pr(X)) · u, (∀X ∈ r). By Proposition 4.2 of [2], the space U(u−)gS is either
C, or else it is C[ur], for a certain element ur. which satisfies ad(X)ur =
−2ωα(X)ur (cf. the computation of “µr” at the end of the proof of Theorem
4.4).

The heart of the proof of [2] Theorem 4.4 is a proof that uk
r⊗eλ is annihilated

by u+ if and only if λ = (k − ρS(hα))ωα. It goes through word for word if we
replace uk

r ⊗ eλ by uk
re for any e which satisfies (Hol wt λ), provided uk

re 6= 0.
This proves that (1) =⇒ (3), and that (3) =⇒ (2). �

Proof of Proposition 2.1. Proposition 2.1 is a fairly direct application of The-
orem 3.1. If c is the Cayley transformation as in [6], one takes g = sp(2n,C),
and
(3.2)

p =

{
c−1

(
X0 0
X −⊤X0

)
c : X0 ∈ gl(n,C), X ∈ Matn(C), symmetric

}
,

u− =

{
c−1

(
0 X
0 0

)
c : X ∈ Matn(C), symmetric

}
.

(3.3)

r =

{
c−1

(
X0 0
0 −⊤X0

)
c : X0 ∈ gl(n,C)

}
,

gS =

{
c−1

(
X0 0
0 −⊤X0

)
c : X0 ∈ sl(n,C)

}
.

The root α is the unique long simple root of sp(2n,C). The element c−1hαc has
a −1 at n, n, a 1 at 2n, 2n, and zeros everywhere else, and ρS(c−1hαc) =

n+1
2 .

Also

ωα ◦ pr

[
c−1

(
X0 0
X −⊤X0

)
c

]
= −Tr(X0).

What remains is to check that the generator ur for U(u−)gS is the ele-
ment M+ defined above. This is not difficult. Since u− is commutative, the
algebra U(u−) may be identified with the symmetric algebra S(u−). We my
identify X ∈ u− with the linear form Y 7→ Tr(XY ), u+ → C, and thus identify
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S(u−) with the algebra of polynomial-functions on u+. The space of SLn(C)-
invariant symmetric polynomials on u+ is well-known to be generated by the
map ( 0 0

X 0 ) 7→ detX, and one easily checks that the corresponding element of
S(u−) is M+. �

Remark 3.4. The preceding proof consists mainly of explaining what the key
players in Boe’s general theory are in the special case g = sp(2n,C). These
details are also worked out in detail in Boe’s Ph. D. thesis [3].

4. Longer proof of Proposition 2.1

The purpose of this section is to give a proof of Proposition 2.1 which is
along the lines of the proof given for the case n = 2 in [6]. Thus, we return to
the notation of Section 2: g = sp(2n,C), etc.

4.1. Step 1

The first step is to show that the weight of a holomorphic and semispherical
vector determines the eigenvalue of the Laplace-Beltrami operator acting on
that vector, and hence on the entire U(g)-module that it generates. Recall the
Laplace-Beltrami operator is a differential operator of degree two which lies
in the center of U(g), and that these conditions determine it uniquely up to
scalar. As noted on p. 129 of [6], a theorem of Harish-Chandra implies that
this operator is the image under the symmetrization map λ ([6], p. 128) of
an ad-invariant element of S(g). Such elements of S(g) may be identified with
ad-invariant polynomial-functions on S(g) using the ad-invariant bilinear form
(X,Y ) := Tr(XY ). The Laplace-Beltrami operator may then be normalized to
be the operator ∆ corresponding to the polynomial-function A 7→ Tr(A2).

This operator can be written out explicitly in terms of a basis for g.Write ei,j
for the matrix with 1 at i, j and zeros everywhere else. Take di = ei,i−en+i,n+i

for each i = 1 to n. Then {di : 1 ≤ i ≤ n} is a basis for the standard Cartan
subalgebra of g. Write {d∗i : 1 ≤ i ≤ n} for the dual basis. Then the positive
roots of h in g are

{d∗i − d∗j : 1 ≤ i < j ≤ n} ∪ {d∗i + d∗j : 1 ≤ i < j ≤ n} ∪ {2d∗i : 1 ≤ i ≤ n}.

Roots from one of the first two sets above are short and roots from the last are
long. For each positive root define Xα to be

Xα :=





ei,j − en+j,n+i, α = d∗i − d∗j ,

ei,n+j + ej,n+i, α = d∗i + d∗j ,

ei, n+ i, α = 2d∗i .

In all cases define Yα to be the transpose. Then teasing out the definitions, one
obtains

∆ = λ




n∑

i=1

d2i + 2
∑

α short

XαYα + 4
∑

α long

XαYα



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=

n∑

i=1

d2i +
∑

α short

(XαYα + YαXα) + 2
∑

α long

(XαYα + YαXα)

=

(
n∑

i=1

d2i −
∑

α

cα[Xα, Yα]

)
+

(
2
∑

α

cαXαYα

)
,

where the sums are over positive roots α and cα is 2 if α is long and 1 if α is
short.

Lemma 4.1. Let V be a U(g)-module generated by a vector v which satisfies

(Hol) and (Weight k). Let ∆ denote the Laplace-Beltrami operator, let

∆(1) =

(
n∑

i=1

d2i −
∑

α

cα[Xα, Yα]

)
,

and let M̂+ = cM+c
−1, where M+ is the operator defined on p. 123 of [6].

Equivalently, M̂+ = det R̂Xij
, with the same convention as on p. 123 of [6].

Then

(4.2) ∆(1)M r
+v = (k + 2r)n(k + 2r − n− 1)M r

+v (r = 0, 1, 2, 3, . . . ),

(4.3) ∆w = kn(k − n− 1)w (∀w ∈ V ).

Proof. One first checks (4.2) using (Hol), together with Proposition 5 of p. 124
of [6]. Equation (4.3) for w = v then follows since ∆−∆(1) kills any holomorphic
vector. Equation (4.3) then holds for all w because ∆ is in the center of
U(g). �

Remark 4.4. This also gives a second proof that the U(g)-module generated
by a holomorphic vector can contain at most one other linearly independent
holomorphic vector, and that such a vector may exist only when the weight
of the generator is of the form −r + n−1

2 , in which case the second linearly

independent vector must be of weight r + 2 + n−1
2 .

Corollary 4.5. If v and r are as above, and furthermore k = −r + n−1
2 , then

(
2
∑

α

cαXαYα

)
M̂ r+1

+ v = 0.

Here the sum may be taken over all positive roots, or only over the roots of h

in R, (defined on p. 122 of [6]) since M̂ r+1
+ v satisfies (Weight r + 2 + n−1

2 ).

Proof. If r, k, and n stand in this relationship to one another, then kn(k−n−
1) = (k + 2r)n(k + 2r − n − 1) and our claim follows by subtracting the two
equations of the previous corollary. �
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4.2. An isomorphism

The next step to mimic the argument given at the bottom of p. 131 of [6]. To

that end define u = M̂ r
+v0 and w = M̂ r+1

+ v0, where c is the Cayley transform.
Let L = Span {( 0 0

X 0 ) | X ∈ Matn C, symmetric} . The goal is to prove that w
is annihilated by U(L) ⊂ U(g). If w is zero, then there is nothing to prove.
Therefore, one may assume that w is nonzero, in which case clearly u is also
nonzero.

Now, recall that M̂+ is defined as the determinant of a certain matrix with
entries in the universal enveloping algebra of R (which is a commutative ring).
See [6], p. 123. Let us now write this out explicitly. Let α(i, i) be the root
such that 2d∗i and for i 6= j let α(i, j) be the root d∗i + d∗j (In particular,
α(i, j) = α(j, i)). Then

M̂+ = det(cα(i,j)Xα(i,j)),

where cα is defined as above. Now, for each i, j let M̂
(i,j)
+ denote the i, j

cofactor in this determinant, (that is, the determinant of the appropriate minor,
times the appropriate sign) which is also an element of the universal enveloping
algebra of R.

Identify gl(n,C) with Ad(c−1)k via the map X0 7→
(

X0 0

0 −⊤X0

)
.

Proposition 4.6. The space

(4.7) Span
(
{M̂

(i,j)
+ u : 1 ≤ i, j ≤ n}

)

is nonzero, and it is an irreducible gl(n,C) module. Assume that

(4.8) Span
(
{Yαw : α ∈ Φ(h, u+)}

)

is nonzero. Then it is an irreducible gl(n,C) module which is isomorphic to

(4.7).

Proof. Since w = M̂+u can be expressed as an R-linear combination of ele-
ments of (4.7), the fact that (4.7) is nonzero follows from the assumption that
w is nonzero. First, as sl(n,C)-modules, R and L are both isomorphic to the
symmetric square representation, which is irreducible and self-dual. The ex-
pansion of the determinant (an sl(n,C)-invariant) by minors defines an sl(n,C)-
invariant bilinear form between R and the space of minors

(4.9) Span
(
{M̂

(i,j)
+ : 1 ≤ i, j ≤ n}

)
⊂ U(u+).

When regarded as gl(n,C)-modules, L remains isomorphic to the dual, R∗,
of R, while the sl(n,C)-invariant bilinear form between (4.9) and R spans a
one dimensional gl(n,C)-module on which X0 ∈ gl(n,C) acts by 2TrX0. It
follows that (4.9) is isomorphic, as a gl(n,C)-module to the twist of R∗, or,
equivalently, of L, by the one dimensional representation 2Tr .
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Now, if x is any semispherical vector x ∈ V of weight l, the mappingD → Dx
is a sl(n,C)-equivariant linear map U(g) → V. On each irreducible sub-gl(n,C)-
module W of U(g) it is either trivial or injective, and when injective the image
is a sub-gl(n,C)-module of V isomorphic to the twist of W by lTr . Thus (4.9)
and (4.8) are both isomorphic to the twist of L by (k + 2r + 2)Tr . �

Corollary 4.10. There is a scalar C such that

Yα(i,j)w = CM̂
(i,j)
+ u (∀1 ≤ i, j ≤ n).

Proof. If (4.8) is trivial, then the statement holds with C = 0. Otherwise,
comparing the sl(n,C)-invariant bilinear forms on R × L and R×(4.9), one

sees that the isomorphism (4.8)→(4.7) must map Yα(i,j)w to CM̂
(i,j)
+ u for each

i, j. Now, both (4.8) and (4.7) are contained in U(g)v0 = U(R)v0, and it follows
from Proposition 4, p. 122 of [6] that this space is multiplicity-free as a gl(n,C)-
module. The result follows. �

4.3. Completion of proof of 2.1

In view of Proposition 5 of [6] (p. 124), it suffices to prove that the vector

w = M̂ r+1
+ satisfies (Hol), i.e., is annihilated by L. Since L is irreducible as a

sl(n,C)-module, and the mapping X → Xw is sl(n,C)-equivariant, its kernel
is either trivial or all of L. Hence, it suffices to prove that w is annihilated by a
single element of L. We shall show that w is annihilated by

∑
1≤i≤j≤n Yα(i,j).

Suppose not. Then, the constant C in Corollary 4.10 is nonzero. It follows
that

0 =
∑

α∈Φ+

cαXαYαw =
∑

1≤i≤j≤n

cα(i,j)Xα(i,j)Yα(i,j)w

= C
∑

1≤i≤j≤n

cα(i,j)Xα(i,j)M̂
(i,j)
+ u = CM̂+u = Cw,

a contradiction.

5. The other elements of the center

It is at first surprising that one may prove Proposition 2.1, and hence con-
jecture 2 of [6] using an argument which references only the Laplace-Beltrami
operator, and not any of the other elements of the center of U(g). However, a
hint as to why this is so is already available in Theorem 3 of [6]. We briefly
review this result.

The center of the universal enveloping algebra of sp(4,C) is a polynomial
ring in two generators, one of degree 2 and the other of degree 4. The degree
2 generator is unique up to scalar, and the degree 4 generator is unique up to
scalar modulo the span of the square of the degree 2 generator. Explicit choices
for the two generators, D2 and D4, are fixed on p. 128 of [6], and it is shown
in Theorem 3 that D4 ≡ −2D2, modulo a right ideal J which annihilates any
vector v satisfying (Weight k) and (Hol).
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The next theorem generalizes this phenomenon. In order to state it, some
notation is required. Let J denote the right ideal in U(g) generated by p. Let
Z denote the center of U(g). Let b denote the Borel subalgebra of g consisting

of all elements
(

X0 0

X −⊤X0

)
∈ p such that X0 is lower triangular. Let ρ denote

half the sum of the roots of h in b. Let h0 be the kernel of Tr in h, and fix
H0 ∈ hr h0.

Theorem 5.1. Let γ be the isomorphism Z → S(h)W defined on p. 118 of [8].
Let t : S(h) → S(h) be the C-algebra isomorphism which is given on elements

of h by H 7→ H + ρ(H). let pr1 denote projection onto the first factor in the

canonical isomorphism S(h) → C[H0]⊕ h0S(h). Then

D ≡ pr1 ◦t ◦ γ(D) (mod J ) ∀D ∈ Z.

Proof. This follows from the construction of γ given on p. 118 of [8]. Let I
denote the ideal in U(g) generated by the nilpotent radical of b. Then γ =
t−1 ◦ γ′ where γ′(D) is uniquely determined by the fact that γ′(D) ∈ U(h) and
D− γ′(D) ∈ I for all D ∈ U(g). Thus D ≡ γ′(D) = t ◦ γ(D) (mod J ). Clearly,
J contains both I and h0S(h). �

Thus, the action of Z on V factors through the projection to a quotient ring
which is isomorphic to a polynomial algebra in one generator, and generated
by the image of the Laplace-Beltrami operator.

6. Notation for the Jacobi case

First, let us set up some notation. The treatment of Jacobi forms in this
paper is influenced by [1] as well as [6] and [7]. Fix integers n and j for the
remainder of the paper.

For a ring R, let sym2
j(R) for the space of symmetric j × j matrices with

entries in R.

6.1. Jacobi group

Define the Jacobi group G(n,j) to be the following subgroup of Sp(2n+2j):







In 0 0 ⊤u
v Ij u ζ
0 0 In −⊤v
0 0 0 Ij







A 0 B 0
0 Ij 0 0
C 0 D 0
0 0 0 Ij


 : u, v ∈ Matj×n, ζ + u⊤v ∈ sym2

j ,

(
A B
C D

)
∈ Sp(2n)




.

It is convenient to identify

(
A B
C D

)
∈ Sp(2n) with




A 0 B 0
0 Ij 0 0
C 0 D 0
0 0 0 Ij


 ∈ G(n,j), and
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(v, u, ζ) with




In 0 0 ⊤u
v Ij u ζ
0 0 In −⊤v
0 0 0 Ij


 .

Doing so equips H(n,j) : {(v, u, ζ) ∈ Matj×n ×Matj×n ×Matj×j : ζ + u⊤v ∈
sym2

j} with the structure of a Heisenberg group, with operation

(v1, u1, w1) · (v2, u2, w2) = (v1 + v2, u1 + u2, w1 + w2 + v1
⊤u2 + u1

⊤v2).

6.2. Symmetric space H(n,j)

Let Hn denote the Siegel upper half-plane of genus n, i.e., the space of all
τ = X + iY ∈ sym2

n(C) with X,Y ∈ sym2
n(R) and Y positive definite. The

group G(n,j)(R) acts on H(n,j) := Hn ×Matj×n(C) by the formulae
(
A B
C D

)
· (τ, z) =

(
(Aτ +B)(Cτ +D)−1, z(Cτ +D)−1

)
,

(v, u, ζ) · (τ, z) = (τ, z + u+ τv).

The stabilizer of (iIn, 0) is U(n) × Z(R), where Z = {(0, 0, ζ) : ζ ∈ sym2
j} is

the center of G(n,j).
Given M ∈ sym2

j (C) define eM : Matj×j(C) → C by eM(A) = e2πiTr(MA).

Observe that eM(A) = eM(⊤A) for all A ∈ Matj×j(C).

6.3. Covering groups

Let S̃p(2n,R) be the metaplectic double cover of Sp(2n,R). Choose a branch
of the square root, and define

J 1
2

((
A B
C D

)
, τ

)
:= det(Cτ +D)−

1
2 , σ(g1, g2) =

J 1
2
(g1g2, τ)

J 1
2
(g1, g2τ)J 1

2
(g2, τ)

.

Then one may identify S̃p(2n,R) with the set Sp(2n,R) × {±1}, equipped
with multiplication (g1, ε1)(g2, ε2) = (g1g2, σ(g1, g2)ε1ε2), as in [6]. However,

the topology on S̃p(2n,R) is such that multiplication is continuous, and hence
disagrees with that of Sp(2n,R)× {±1}.

Define an action of S̃p(2n,R) on H
(n,j)
R

by composing the usual action of

Sp(2n,R) with the projection S̃p(2n,R) → Sp(2n,R), and let G̃
(n,j)
R

be the

semidirect product S̃p(2n,R)⋊H
(n,j)
R

, defined using this action. The function

J 1
2

(((
A B
C D

)
, ε

)
, τ

)
= J 1

2

((
A B
C D

)
, τ

)
ε

satisfies the cocycle condition

J 1
2
(g1g2, τ) = J 1

2
(g1, g2τ)J 1

2
(g2, τ) (∀g1, g2 ∈ S̃p(2n,R), τ ∈ Hn).



570 JOSEPH HUNDLEY

6.4. Cocycle and slash operator

Fix k ∈ Z and M ∈ sym2
j

1
2Z. For ((

A B
C D ) , ε) ∈ S̃p(2n,R), (v, u, ζ) ∈ H

(n,j)
R

,

and (τ, z) ∈ H(n,j), define

j k
2
,M (g(v, u, ζ), (τ, z))

= J 1
2
(g, τ)

k
eM(ζ+ (vτ+ 2z+ u)⊤v−(z + u+ vτ)(Cτ +D)−1C(z + u+ vτ)).

Then j k
2
,M satisfies the cocycle condition

j k
2
,M(g1g2, x

¯
) = j k

2
,M(g1, g2x

¯
)j k

2
,M(g2, x

¯
)

(∀g1, g2 ∈ G̃
(n,j)
R

, x
¯
∈ Hn ×Matj×n(C)).

Now, for f : H(n,j) → C and g ∈ G̃
(n,j)
R

define f | k
2
,Mg : H(n,j) → C by

(
f
∣∣∣
k
2
,M

g

)
(x
¯
) := j k

2
,M(g, x

¯
)f(gx

¯
) (x

¯
∈ H(n,j)).

6.5. Meromorphic Jacobi forms

Let j0k
2
,M

: G̃
(n,j)
R

×H(n,j) → C be defined by the same formula as j k
2
,M with

the factor εk omitted. To define Jacobi forms, one chooses a discrete subgroup

Γ ⊂ G
(n,j)
R

, and a function χ : Γ → C such that (γ, x
¯
) 7→ χ(γ)j0k

2
,M

(γ, x
¯
) is a

cocycle. In this case χ̃((γ, ε)) := χ(γ)ε is a character of the preimage Γ̃ of Γ in

G̃
(n,j)
R

. Then a meromorphic Jacobi form of weight k
2 , index M, and multiplier

χ is a meromorphic function f : H(n,j) → C which satisfies

(6.1) j0k
2
,M

(γ, x
¯
)χ(γ)f(γx

¯
) = f(x

¯
) (∀γ ∈ Γ, x

¯
∈ H(n,j)).

One might equivalently describe it as being invariant under the right-action of

Γ̃ on functions H(n,j) → C defined by
(
f
∣∣∣
k
2
,M,χ̃

γ

)
(x
¯
) := j k

2
,M(γ, x

¯
)χ̃(γ)f(γx

¯
) (γ ∈ Γ̃, x

¯
∈ H(n,j)).

7. Main result, a la Choie-Kim

Definition 7.1. Take M ∈ sym2
j(R), positive definite. Define ∂

∂τ to be the

n × n matrix with r, s entry (1 + δr,s)
∂

∂τrs
, and ∂

∂z the j × n matrix with r, s

entry ∂
∂zrs

. Finally, write |M| for the determinant of M and M̃ for the classical

adjoint of M, i.e., the matrix of cofactors satisfying M−1 = |M|−1M̃. Then

LM := det

(
4πi|M|

∂

∂τ
−

∂

∂z

t

M̃
∂

∂z

)
.

Theorem 7.2. Let f be a meromorphic Jacobi form of weight −r+ n+j+1
2 and

index M. Then Lk
M · f is a meromorphic Jacobi form of weight r+ n+j+1

2 and

index M.
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Proof. Theorem 7.2 can actually be deduced from Proposition 2.1 and the
results of [6]. First, define the extension by eMeMeM of f

extM f

(
τ ⊤z
z τ ′

)
= f(τ, z)eM(τ ′) (τ ∈ Hn, z ∈ Matj×n C, τ

′ ∈ Hj).

Clearly, meromorphicity of f implies that of extM f. Further, it follows from a
determinant identity given on p. 86 of [7] that

D
l extM f = [(4πi)n−j detMn−1]l extM Ll

Mf

for all l ∈ N. Next, define

σ̃k : C∞(Hn+j) → C∞(S̃p(2n+ 2j,R)).

By
σ̃kf (g) =

[
f
∣∣
k
g
]
(iIn+j) = J 1

2
(g, iIn+j)f (g · iIn+j) .

Then for any f1 ∈ C∞(Hn+j),

σ̃kf1 = σkF1, where F1(τ) = detY k/2f(τ),

and σk is defined as in [6]. The image of σk is the space

C∞(S̃p(2n+ 2j,R))(Ũ(n+j),detk)

consisting of all φ ∈ C∞(S̃p(2n+ 2j,R)) which satisfy

φ (gκ) = φ(g)J 1
2
(κ, iIn+j)

2k (∀g ∈ S̃p(2n+ 2j,R), κ ∈ Ũ(n+ j)).

If k ∈ Z this takes the more convenient form

φ

(
g

(
A −B
B A

))
=φ(g) det(A+Bi)k (∀g ∈ Sp(2n+2j,R), A+Bi ∈ U(n+j)).

As shown in [6] the action of M+ ∈ U(sp(2n+ 2j,C)) on C∞(S̃p(2n+ 2j,R))

maps C∞(S̃p(2n+2j,R))(Ũ(n+j),detk) to C∞(S̃p(2n+2j,R))(Ũ(n+j),detk+2) for

each k ∈ 1
2Z. This induces operators

Mk := σ̃−1
k+2 ◦M+ ◦ σ̃k : C∞(Hn+j) → C∞(Hn+j) (k ∈

1

2
Z).

One may also define Ml
k := σ̃−1

k+2l ◦M
l
+ ◦ σ̃k = Mk+2l−2 ◦ · · · ◦Mk+2 ◦Mk for

each k ∈ 1
2Z, l ∈ N.

Lemma 7.3. Suppose that f ∈ C∞(Hn+j) and Ml
kf are both meromorphic.

Then

M
l
kf = 2lnDlf.

Proof. We expand slightly on the proof given on p. 126 of [6]. Write τ ∈ Hn

as X + iY and say that a function is “simple nonmeromorphic” if it is equal
to a meromorphic function times a rational function of Y with the property
that the degree of the denominator exceeds that of the numerator. Note that
the zero function is both meromorphic and simple nonmeromorphic, and is the
only function with both properties.
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It follows from results of Harris [9] that the operator Mk can be realized

explicitly as multiplication by (det Y )−
n+j−1

2
+k followed by 2nD, and then mul-

tiplication by (det Y )
n+j−1

2
−k. This implies that Mkf − 2nDf is a simple non-

meromorphic function for any meromorphic function f, and that Mk applied to
any simple nonmeromorphic function is again simple nonmeromorphic. Thus,
for f meromorphic Ml

kf − 2nlDlf is simple nonmeromorphic. If Ml
kf is mero-

morphic, then Ml
kf − 2nlDlf is also meromorphic, and therefore zero. �

Let Mer(Hn+j) denote the space of meromorphic functions Hn+j → C and
let

Mer(S̃p(2n+ 2j,R))(Ũ(n+j),detk) := σ̃k [Mer(Hn+j)]

⊂ C∞(S̃p(2n+ 2j,R))(Ũ(n+j),detk).

Now, as explained in [6], pp. 124–127, it follows from Proposition 2.1 that
Mr

−r+n+j+1

2

maps Mer(Hn+j) to Mer(Hn+j), and therefore coincides with a

scalar multiple of Dr on Mer(Hn+j).

Now, let Λ denote the right-action of S̃p(n,R) on C∞(S̃p(n,R) given by
[Λ(g)f ](h) = f(gh). A straightforward calculation shows that

(
extM f1

∣∣∣
k
g
)
= extM

(
f1
∣∣
k,M

g
)

(∀g ∈ G̃
(n,j)
R

, f1 ∈ C∞(H(n,j))).

So

f
∣∣
k,M

γ = χ̃(γ)f ⇐⇒ (extM f)
∣∣
k
γ = χ̃(γ)f

⇐⇒ Λ(γ)σ̃k(extM f) = χ̃(γ)σ̃k(extM f).

Now it’s clear that the action of S̃p(2n+ 2j,R) on C∞(S̃p(2n + 2j,R)) via Λ
commutes with the action of U(sp(2n+ 2j,C)) on the right. Hence

Λ(γ)M r
+σ̃k(extM f) = χ̃(γ)M r

+σ̃k(extM f),

and so [
(Mr

k extM f)
∣∣∣
k+2r

γ

]
= χ̃(γ)(Mr

k extM f).

If k = −r+ n+j+1
2 , then Proposition 2.1 implies that (Mr

k extM f) is meromor-
phic, and therefore one may replace Mr

k be 2nrDr. Then the result follows from
the relationship between D, extM and LM already mentioned. �

8. Alternate approach, a la Bump-Choie

In the last section we showed that Theorem 7.2, which is essentially a version
of Bol’s result for Jacobi forms, may be proved by extending Jacobi forms to
functions on Hn+j which satisfy a certain equivariance property and applying
the same results used to prove Bol’s result for Siegel modular forms, Conjecture
1 of [6].
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One may ask whether it is also possible to prove Theorem 7.2 by developing
a version of Proposition 2.1 for Jacobi forms, which reduces Theorem 7.2 to a
statement regarding actions of the Lie algebra of the Jacobi group, and then
proving that statement. In this section, we perform a translation for Jacobi
forms, similar to the one given in [6] for Siegel modular forms, and then state
and prove a result which can be regarded as a version of 2.1 for Jacobi forms.
This approach will fall short of a second proof of Theorem 7.2, because no
analogue of Lemma 7.3 will be proved. In other words, we shall show that a
certain differential operator which arises naturally from consideration of the
universal enveloping algebra exhibits the “recovery” property characteristic of
Bol’s result, but we shall not prove a result relating this operator back to the
more classical heat operator LM considered in [7].

8.1. Liftings to the Jacobi group

For k ∈ 1
2Z, M ∈ sym2

j
1
2Z, and f : H(n,j) → C, define

[ϕk,Mf ] (g) :=

(
f
∣∣∣
k,M

g

)
(iIn, 0).

Clearly, for any function f, the function [ϕk,Mf ] satisfies
(8.1)

[ϕk,Mf ]

(
g(0, 0, ζ)

(
A B
−B A

))
= eM(ζ)ε2k, det(A+ iB)k [ϕk,Mf ] (g)

(∀g ∈ G̃
(n,j)
R

, ζ ∈ sym2
j(R), (A+ iB, ε) ∈ Ũ(n)).

Moreover, if f satisfies (6.1), then ϕk,Mf satisfies

[ϕk,Mf ](γg) = χ̃−1(γ)[ϕk,Mf ](g) (∀γ ∈ Γ̃, g ∈ G̃
(n,j)
R

).

8.2. Relating holomorphicity to the action of the Lie algebra

Let g(n,j) denote the Lie algebra of G(n,j). It consists of all matrices of the
form



A 0 B ⊤u
v 0 u Z
C 0 −⊤A −⊤v
0 0 0 0


 , A ∈ Matn×n, B, C ∈ sym2

n, u, v ∈ Matj×n, Z ∈ sym2
j .

Identify



A 0 B 0
0 0 0 0
C 0 −⊤A
0 0 0 0


 with

(
A B
C −⊤A

)
∈ sp(2n), and
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


0 0 0 ⊤u
v 0 u Z
0 0 0 −⊤v
0 0 0 0


 with [u, v, Z] ∈ Matj×n ×Matj×n × sym2

j ,

thus inducing a bracket on h(n,j) := Matj×n ×Matj×n × sym2
j ,

[
[u1, v1, Z1], [u1, v2, Z1]

]
= [0, 0,−u1

⊤v2 − v2
⊤u1 + u2

⊤v1 + v1
⊤u2]

(A triple in h(n,j) will be written with brackets to avoid being mistaken for an
element of H(n,j)).

Next, let

cn =




1
1+iIn

−i
1+iIn

1
1+iIn

i
1+iIn




be the Cayley transform for Sp(2n) (which we identify with an element of

G
(n,j)
C

) and define an action of U(g
(n,j)
C

) on smooth functions G̃
(n,j)
R

→ C by
twisted right translation
(8.2)

Rcn(X)φ(g̃) := lim
t→0

1

t

(
φ(g̃ exp(tc−1

n Xcn))− φ(g̃)
)
, c−1

n Xcn ∈ g
(n,j)
R

,

extended to all of g
(n,j)
C

by C-linearity.

Proposition 8.3. A smooth function f : H(n,j) → C is holomorphic if and

only if the corresponding function ϕk,Mf is annihiliated by Rcn(X) for all X
of the form

(
0 0
X0 0

)
, X0 ∈ sym2

n(R), [λ, 0, 0], λ ∈ Matj×n(R).

Proof. Write x
¯

∈ H(n,j) as (τ, Z) with τ ∈ Hn and Z ∈ Matj×n(C). The

first goal is to show that f : H(n,j) → C is holomorphic in the variable Z if
and only if ϕk,Mf is annihilated by Rcn([λ, 0, 0]) for every λ ∈ Matj×n(R).

Write Z = (zrs)
j
r=1

n
s=1 ∈ Matj×n(C) as U + iV, where U = (urs)

j
r=1

n
s=1 and

V = (vrs)
j
r=1

n
s=1 are in Matj×n(R). A function is holomorphic in Z if and only

if it satisfies:

(8.4)
∂f

∂zrs
=

∂f

∂urs
+ i

∂f

∂vrs
= 0 (∀1 ≤ r ≤ j, 1 ≤ s ≤ n).

Form the matrix ∂f
∂Z = ( ∂f

∂zrs
)jr=1

n
s=1. Then (8.4) is equivalent to

(8.5)
∂f

∂Z
= 0, or

∂f

∂Z
· A = 0 for any given A ∈ GL(n,C).

Now let λ∗
rs ∈ h

(n,j)
R

be the element [ers, 0, 0] where ers is the matrix with a 1
at the rs position and zeros everywhere else. Also define µ∗

rs to be [0, ers, 0].
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Define the usual (untwisted) action of g
(n,j)
R

on functions G̃
(n,j)
R

→ C by

R(X)f(g̃) =
d

dt
f(g̃ exp(tX))

∣∣∣
t=0

.

One checks that

(λ, µ, ζ)g0 exp(tλ
∗
rs) · (i, 0) =

(
g0 · i, µ+ λg0 · i+ itλ∗

rs(Ci+D)−1
)
,

(λ, µ, ζ)g0 exp(tµ
∗
rs) · (i, 0) =

(
g0 · i, µ+ λg0 · i+ tµ∗

rs(Ci+D)−1
)

for all (λ, µ, ζ) ∈ H
(n,j)
R

, g0 = ( ∗ ∗
C D ) ∈ S̃p(2n,R), t ∈ R, 1 ≤ r ≤ j, 1 ≤ s ≤ n.

It follows that (8.5), with A = (Ci+D)−1, is equivalent to

(8.6) R(µ∗
rs)f + iR(λ∗

rs)f = 0 (∀ 1 ≤ r ≤ j, 1 ≤ s ≤ n).

One checks that cn(µ
∗
rs+ iλ∗

rs)c
−1
n = −2λ∗

rs, and this proves that f is holomor-
phic in Z if and only if it is annihilated by Rcn(λ∗

rs) for all 1 ≤ r ≤ j, 1 ≤ s ≤ n.
Suppose this to be the case. Then f is holomorphic on Hn ×Matj×n(C) if

and only if τ 7→ f(τ, µ + λτ) is holomorphic for each fixed λ, µ ∈ Matj×n(R).
Thus, the proposition is reduced to its analogue from the Siegel case, proved
in [9], §2.3.1 (cf. [6], p. 126). �

8.3. A Jacobi analogue of Proposition 2.1

Theorem 8.7. Let V be a g
(n,j)
C

-module. Say that v ∈ V is holomorphic if

(Hol - Jac) [λ, 0, 0]v =

(
I 0
X I

)
v = 0,

that v is of index M if

(ind M) [0, 0, ζ] · v = 2πiTr(ζM) · v ∀ζ ∈ Matj×j C

and that v is of weight k if

(weight k - Jac)

(
A 0
0 −⊤A

)
v = kTrAv (∀A ∈ gl(n,C)).

Suppose that v0 is holomorphic of index M and weight (−r + n+j+1
2 ). Then

M̂ r
+v0 is holomorphic of index M and weight (r + n+j+1

2 ). Moreover, if k 6= r

then M̂k
+v0 is of weight (−r+ n+j+1

2 +2k) and index M, but not holomorphic.

9. Proof of Theorem 8.7

Definition 9.1. Let v denote the subspace of h(n,j) consisting of all matrices
of the form 



0 0 0 ⊤u
v 0 u 0
0 0 0 −⊤v
0 0 0 0


 ,

and let z denote the center of g(n,j).
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Definition 9.2. Define T0 : h(n,j) → sp(2n) by

T0




0 0 0 ⊤u
v 0 u Z
0 0 0 −⊤v
0 0 0 0


=




0 0 0 ⊤u
v 0 u 0
0 0 0 −⊤v
0 0 0 0







0 0 0 0
0 0 0 0
0 0 0 0

0 Z̃ 0 0







0 0 0 ⊤u
v 0 u 0
0 0 0 −⊤v
0 0 0 0




=




⊤uZ̃v 0 ⊤uZ̃u 0
0 0 0 0

−⊤vZ̃v 0 −⊤vZ̃u 0
0 0 0 0


 ,

where Z̃ is the “classical adjoint” of Z.

Observe that T0 is sp(2n)-equivariant. Furthermore, it is nonzero. As the
adjoint representation of sp(2n) is irreducible, it follows that T0 is surjective.
This gives an injective, sp(2n)-equivariant map from the dual of sp(2n) into
the space of polynomial functions on h(n,j). One may identify g(n,j) with its
dual using the invariant bilinear form (X,Y ) 7→ Tr(XY ). Then each of the
spaces sp(2n), v and z is identified with its dual and we obtain an injective
sp(2n)-equivariant map T : sp(2n) → sym2 v⊗ symj−1 z.

The map T may be described concretely as follows. Define Z
¯
∈ sym2

j (z) to

be the j × j matrix with i, l entry equal to (En+i,2n+j+l + En+l,2n+j+i) ∈ z,
define V

¯
∈ Matj×n v to be the j × n matrix with i, l entry equal to En+i,l −

En+j+l,2n+j+i ∈ v, and define U
¯
∈ Matj×n v to be the j × n matrix with i, l

entry equal to En+i,n+j+l + El,2n+j+i ∈ v. Then

T (X) = Tr

(
⊤X

[
⊤U
⊤̄V
¯

]
Z̃
¯

[
V
¯

U
¯

])
.

Proposition 9.3. For all V ∈ v and all X ∈ sp(2n) one has

ad(V )T (X) = 2 detZ
¯
· [V,X ].

Proof. The space

{X ∈ sp(2n) : 2 detZ
¯
· [V,X ]− ad(V ) · T (X) = 0 ∀V ∈ v}

is clearly an sp(2n)-submodule. We claim that it is sp(2n). It suffices to show
that it is nonzero. The space v has a basis

{En+i,l − En+j+l,2n+j+i : 1 ≤ i ≤ j, 1 ≤ l ≤ n}

∪ {En+i,n+j+l + El,2n+j+i : 1 ≤ i ≤ j, 1 ≤ l ≤ n}.

It suffices to consider V in this basis. We henceforth assume V ∈ v is in this
basis.

Take X = E1,n+j+1. Then

[V,X ] =

{
En+i,n+j+1 + E1,2n+j+i V = En+i,1 − En+j+1,2n+j+i (1 ≤ i ≤ j)

0, V not of this form.
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One may express T (X), as u
¯
Z̃
¯

⊤u
¯
, where

u
¯
= [En+1,n+j+1 + E1,2n+j+1, . . . , En+j,n+j+1 + E1,2n+2j ] ∈ Mat1×j v,

and the product should be computed in the symmetric algebra of h(n,j). Now,
V acts trivially on z, so

ad(V )
(
u
¯
Z̃
¯

⊤u
¯

)
= (ad(V )u

¯
) Z̃
¯

⊤u
¯
+ u

¯
Z̃
¯

(
ad(V )⊤u

¯

)
.

Further,

ad(V )U =





[En+1,2n+j+i + En+i,2n+j+1, . . . , En+j,2n+j+i + En+i,2n+2j ],

V = En+i,1 − En+j+1,2n+j+i (1 ≤ i ≤ j)

0, V not of this form.

In the case when ad(V )u
¯
is nonzero it agrees with the ith row/column of the

symmetric matrix Z
¯
. It follows that ad(V )u

¯
Z̃
¯
is equal to det Z

¯
times the ith

standard basis vector. Hence, (ad(V )u
¯
) Z̃
¯

⊤u
¯
equals det Z

¯
times the ith entry of

u
¯
, which is En+i,n+j+1+E1,2n+j+i. It follows by symmetry that ad(V )T (X) =

2 detZ
¯
(En+i,n+j+1 + E1,2n+j+i). �

Definition 9.4. Define T
¯

: sp(2n) → U(g(n,j)) by T
¯
(X) = λ(2 det Z

¯
· X −

T (X)) = 2 detZ
¯
· X − λ(T (X)). Here, λ denotes symmetrization as on [6],

p. 128.

It follows from Proposition 9.3 that the image of T
¯
commutes with U(h(n,j))

⊂ U(g(n,j)).

Proposition 9.5. One has

T
¯
(X)T

¯
(Y )− T

¯
(Y )T

¯
(X) =: [T

¯
(X),T

¯
(Y )] = 2 detZ

¯
T
¯
([X,Y ]).

Proof. Indeed,

2 detZ
¯
T
¯
([X,Y ]) = 4(det Z

¯
)2[X,Y ]− det Z

¯
λ(ad(X)T (Y ))

= 4(det Z
¯
)2[X,Y ]− 2 detZ

¯
[X,λ(T (Y ))],

[T
¯
(X),T

¯
(Y )] = [2 detZ

¯
·X − λ(T (X)),T

¯
(Y )] = 2 det Z

¯
[X,T

¯
(Y )]

= 4(det Z
¯
)2[X,Y ]− 2 detZ

¯
[X,λ(T (Y ))]. �

Definition 9.6. Let V be a g(n,j)-module such that [0, 0, ζ] · v = 2πiTr(Mζ)v
for all ζ ∈ Matj×j , symmetric, and all v ∈ V. Define X ∗ v = 1

2 detMT
¯
(X)v.

The previous proposition shows that X ∗ Y ∗ v− Y ∗X ∗ v = [X,Y ] ∗ v. Hence,
∗ extends to an action of U(sp(2n)) on V.

Lemma 9.7. Let V be a U(g
(n,j)
C

)-module with action · and define an alternate

action of sp(2n,C) by ∗ as above. Suppose v ∈ V satisfies
(
0 0
X 0

)
· v = [w, 0, 0] · v = 0, ∀X ∈ Matn×n C, symmetric, w ∈ Matj×n C.
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Then (
0 0
X 0

)
∗ v = 0∀X ∈ Matn×n C, symmetric.

Proof. Write v = l+ r where l = {[w, 0, 0], w ∈ Matj×n} and r = {[0, µ, 0], µ ∈
Matj×n}. Then it follows from the definition of T that

T

(
0 0
X 0

)
∈ sym2 l ⊂ sym2 v,

and the result follows. �

Lemma 9.8. Fix M ∈ Matj×j Z, symmetric. Let V be a U(g
(n,j)
C

)-module

such that [0, 0, ζ] · v = 2πiTr(Mζ)v for all ζ ∈ Matj×j C and v ∈ V. Let ·

denote the given action of g
(n,j)
C

on V and define a second action ∗ of sp(2n,C)
as in Definition 9.6. Suppose v0 ∈ V satisfies

[w, 0, 0] · v = 0 ∀w ∈ Matj×n C.

Then

λ

(
T

(
X

⊤X

))
· v =

j

2
TrX · v,

whence
(
X

⊤X

)
· v = kTr(X)v =⇒

(
X

⊤X

)
∗ v = (k −

j

2
)Tr(X)v

Proof. Write V2n for the standard representation of Sp(2n), realized as column
vectors, and write Uj for the standard representation of GL(j), also realized

as column vectors. Keeping in mind that g(n,j) inherits an action of Sp(2n)×
GL(j) from inclusion into sp(2n+ 2j), one has isomorphisms

sp(2n) ∼= sym2 V2n, v1 · v2 ∈ sym2 V2n 7→ (v1
⊤v2 + v2

⊤v1)J ∈ sp(2n),

v ∼= Uj ⊗ V2n, v ⊗ u ∈ Uj ⊗ V2n 7→ [u ⊤v, 0] ∈ v,

z ∼= sym2 Uj , u1 · u2 ∈ sym2 Uj 7→ u1
⊤u2 + u2

⊤u1

(Here, we identify the j × 2n matrix u ⊤v with a pair of j × n matrices ν, µ to
obtain an element of v in the usual form).

The vector space V2n is the direct sum of two n-dimensional isotropic sub-
spaces W,W⊥ such that l ↔ W ⊗Uj and r ↔ W⊥ ⊗Uj . Specifically, W is the
span of the first n standard basis vectors and W⊥ is the span of he last n.

Hence v1 · v2 ∈ sym2 V2n corresponds to a matrix of the form
(
X 0
0 −⊤X

)

if and only if one of v1, v2 lies in W and the other in W⊥. Without loss of
generality one may assume v1 ∈ W and v2 ∈ W⊥.
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Now, let u1, . . . , uj denote the standard basis basis for Uj . Then the mapping
T can be expressed in this notation as

T (v1 · v2) =

j∑

i1,i2=1

(v1 ⊗ ui1)Z̃¯i1,i2
(v2 ⊗ ui2).

Furthermore,

[0, 0, ζ] · v = 2πiTr(Mζ)v =⇒ Z
¯ij

v = 4πiMijv.

Finally,

λ
(
(v1 ⊗ ui1)Z̃¯i1,i2

(v2 ⊗ ui2)
)

=
1

2
Z̃
¯i1,i2

((v1 ⊗ ui1)(v2 ⊗ ui2) + (v2 ⊗ ui2)(v1 ⊗ ui1))

=
1

2
Z̃
¯i1,i2

([(v1 ⊗ ui1), (v2 ⊗ ui2)] + 2(v2 ⊗ ui2)(v1 ⊗ ui1)) .

Now, tracing through the definitions, [(v1 ⊗ ui1), (v2 ⊗ ui2)] is precisely Z
¯i1,i2

.
Hence

j∑

i1,i2=1

Z̃
¯i1,i2

[(v1 ⊗ ui1), (v2 ⊗ ui2)] = j(det Z
¯
).

On the other hand, v1 ∈ W =⇒ v1 ⊗ ui1 ∈ l =⇒ (v1 ⊗ ui1) · v = 0 for all
1 ≤ i1 ≤ j. The result follows. �

Definition 9.9. Fix a positive integer N. Let M̂
¯ +,N to be the N ×N matrix

whose i, j entry is Ei,N+j + Ej,N+i ∈ sp(2N) ⊂ U(sp(2n)). Let M̂+,N be the
element of U(sp(2N)) obtained by taking the determinant of this matrix.

One may note that the entries of M̂
¯ +,N all commute in U(sp(2N)), so one

does not need to be concerned about the orders in which the products are taken
in taking the determinant. Furthermore, M̂+,n+j ∈ U(g(n,j)) ⊂ U(sp(2n+2j)).

Lemma 9.10. One has (detZ
¯
)jT
¯
(M̂+,n) = (detZ

¯
)nM̂+,n+j.

Proof. Let U
¯
be the j×nmatrix with i, k entry equal to [0, Ei,k, 0] ∈ U(h(n,j)) ⊂

U(sp(2n+ 2j)). Then

M̂
¯ +,n+j =

(
M̂
¯ +,n

⊤U
¯

U
¯

Z
¯

)
.

The mapping T
¯
: U(sp(2n)) → U(g(n,j)) induces a mapping

Matn×n(U(sp(2n))) → Matn×n(U(g(n,j)))

which we denote by the same symbol T
¯
. Then T

¯
(M̂
¯ +,n) = det Z

¯
M̂
¯ +,n−U

¯
Z̃
¯

⊤U
¯
.

Hence

det Z
¯
n · M̂+,n+j = det

(
det Z

¯
· In −⊤U

¯
Z̃
¯

0 Ij

)(
M̂
¯ +,n

⊤U
¯

U
¯

Z
¯

)
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= det

(
det Z

¯
· M̂
¯ +,n − ⊤U

¯
Z̃
¯
U
¯

0
U
¯

det Z
¯
· Ij

)

= (det Z
¯
)j detT

¯
(M̂
¯ +,n),

which gives the result. �

Proof of Theorem 8.7. Theorem 8.7 now follows from Proposition 2.1. Regard
V as a U(sp(2n,C)) module with the action ∗.

It follows from Lemma 9.7 that v0 is holomorphic. By Lemma 9.8 it is of
weight −r+ n+1

2 . Therefore, by Proposition 2.1, M̂ r
+,n ∗ v0 is holomorphic and

of weight r + n+1
2 relative to the action ∗. By Lemma 9.10, and the fact that

M is assumed positive definite, the same is true of M̂ r
+,n+j · v0. Lemma 9.8

shows that M̂ r
+,n+j · v0 is of weight r + n+j+1

2 relative to the action ·. Now,

(
X 0
0 −⊤X

)
M̂+,n+j−M̂+,n+j

(
X 0
0 −⊤X

)
= TrXM̂+,n+j (∀X ∈ gl(n+j,C)).

It immediately follows that



0 0 0 0
λ 0 0 0
0 0 0 −⊤λ
0 0 0 0


 M̂k

+,n+j · v0 = 0, ∀λ ∈ Matj×n C, k ∈ N.

It follows from this, along with Lemma 9.7 that M̂k
+,n+j · v0 is holomorphic if

and only if k = r. �

References

[1] R. Berndt and R. Schmidt, Elements of the Representation Theory of the Jacobi Group,
Progress in Mathematics, 163. Birkhäuser Verlag, Basel, 1998.
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