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ON THE SPECTRAL GEOMETRY FOR
THE JACOBI OPERATORS OF HARMONIC
MAPS INTO KENMOTSU MANIFOLDS

TaE 110 KaNG

ABSTRACT When the target manifold 1s certain Kenmotsu manifolds,
we characterize 1nvariant immersions, tangential anti-invariant immer-

sions and normal anti-invariant ummersions by the spectra of the Ja-
cobr operator

1. Introduction

The spectral geometry for the second order operators arising in Rie-
mannian geometry has been studied by many authors. Among them,
the spectral geometry for the Jacobi opcrator of the energy of a har-
monic map was studied in [4,7] (for marfolds) and {6] {for Riemanman
foliations), and for the Jacobi operator of the area functional was stud-
ied in [1,3]. The Jacobi operator of a harmonic map arises in the second
variation formula of the energy of a harmonic map This formula can
be expressed in terms of an elliptic differential operator (called the
Jacobi operator) defined on the space of cross sections of the induced
bundle of the target manifold.

In this paper, we shall study the spectral goemetry for the Jacobi

operator of a harmonic map when the target manifold is Kenmotsu
manifolds.
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2. Preliminaries

Let (M, ¢) be an m-dimensional closed (i.e., compact without bound-
ary) Riemannian manifold with the metric g and (N, k) be an n-dimen-
sional Riemannian manifold with the metric A.

A smooth map f: (M, g) — (N, h) is said to be harmonicif it is a
critical point of the energy functional F, which is defined by E(f) :=
Jur e(f)dvg, where the energy density e( f) of f is defined to be e(f) :=
3 Sty h(fves, fre,) (fs is the differential of f, {e; <+ -en} a local
orthonomal frame field on M, and dv, the volume element with respect
to g).

Let us consider the Jacobi operator J; for a harmonic map f defined
by J;V = A;V —R;V for V € I'(E) (the space of smooth sections of
the induced bundle f*TN =: F of the tangent bundle TN ), where

A is the rough Laplacian associated to the induced connection V of F
defined by ViV := V%,V ( for any vector field X on M, V" the Levi-
3 Fu 3

Civita connection of the metric h ), and RfV := 3~ Ru(V, f.€.) fee.
( Rp is the Riemanman curvature tensor of (N, k) ). In this paper, we
take the convention Rn(X,Y) := [V%, V] _V?X g)» Where X,Y are
vector fields on N. Then J; is self-adjoint, elliptic of second order and
has a discrete spectrum as a conseqgence of the compactness of M.

Consider the semigroup e’/ given by

e~y (z) = fM K(t,z,y, Jp)V(y)dug(y),

where K(t,z,y,J;) € Hom(FE,, E,) is the kernel function (z,y €
M, E; is the fibre of E over z). Then we have asymptotic expansions
for the L2-trace

(2.1) Tr(e V)= ie‘“‘ ~{(4nt)" % it"an(.ff) (t{0t), ‘
=1 n=0

where each a,(Jf) is the spectral invariant of J t, which depends only
on the discrete spectrum ;

Spec(Jp) = { M < Ay <+ < X+ T +oo}.
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Applying the Jacobi operator Jy of a harmonic map f to Gilkey’s
results([2]), H.Urakawa([7]) obtained

(2.2) ao(Jf) =n-Vol(M,g),
{2.3) ar(J5) = ﬁ/ nglyg+/ Tr(Ryg)dvg,
6 Jar M
i 2 2
Q1) aally) = g5 [ 672 = 2l +20 8y,
1

{ = 2
_301RY) :
+ 265 jM[ 30 RV + 607, Tr(Ry)
+ 180T r(R; ) dv,,

where RV is the curvature tensor of the connection V on £, which is
defined by RY := f*Rjs, and Ry, pg,Tg are the curvature tensor, Riccl
tensor, scalar curvature on M, respectively

3. The caculation of spectral invariants

Let (¢,&€,7, ) be the almost contact metric structure([5,91) of the
almost contact Riemannian manifold . This means that

¢’ =-I+E®y @) =0=no0g,
(3.1) n(€) =1, n¢X,Y)=—h(X,$Y),
n(X) = h(X,£),

where ¢ is a tensor field of type (1,1), £ a vector field, # a 1-form, I
the identity transformation, 2 a Riemanman metric and X . Y vector
fields on N. Define a 2-form ® on N by ®(X,Y) := h(X,¢Y) for any
vector fields X, ¥ on N.

In an almost contact Riemannian manifold V, if the Ricei tensor pp

satisfies pp, = ah + by ® 5, where @ and b are smooth fuctions on N,
then it is called an n- Ewmnstein manzfold.

PROPOSITION 1 Let f, f' be harmonic maps of compact Riemann-
wn manzfold (M, g) into an 5-Einstemn mamfold (N, ¢,£,1,h) whose
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Rucci tensor py 18 of the form ; pp, = ah + bn @ 1 with a(# 0) and
b are some smooth functions on N. If Spec(Js) = Spec(Jy) and
the structure vector field € is normal to both f(M) and f'(M), then
E(f} = E(f').

ProoF. From (2.3), we get
2aB() +b [ 150 dvy = 205(7) b [ 1 0l de

But {|f*n)> = 0 = [|f*n||® because of the normality of the structure
vector field &, which completes the proof.

K.Kenmotsu([5]) studied a class of almost contact Riemannian man-
ifolds which satisfies the following conditions ;

(VE)Y = —n(Y)sX — (X, 4Y)E,
Ve =X —n(X)¢
for any vector fields X ,Y on N. One call such manifolds Kenmotsu
manifolds. It has been shown([5]) that a Kenmotsu manifold (N, ¢, €, 7, h)
has constant ¢-sectional curvature & if and only if
(3.2)
WMR(X,Y)Z,W) = ofh(Y, Z)MX,W) — h(X, D)h(Y, W)}
+ B{n(X (2R, W) + n(Y)n(W)A(X, Z)
- (X (W)R(Z,Y) - n(Zm(Y )X, W)
+ (X, 2)B(W,Y) - (X, W)B(Z,Y)
- 29(X,Y)®(Z,W)}

for any vector fields X,Y, Z, W on N, where a = ﬁiﬁ,ﬁ =a+t+l= -"—-'E—l.

It is known([5]) that a Kenmotsu manifold with constant ¢-sectional

curvature k is nothing but the hyperbolic space with constant curvature
-1 =k.
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Now consider another example ie., a warped product space N =
L x; F, where F denotes a Kaehlerian manifold and f(t) = ce' a
warping function on a real line L{c is a nonzero constant). Then N
admits an almost constact metric structure. In particular, when F
i1s the complex projective space with constant holomorphic sectional
curvature 4, the curvature tensor of N = L x ¢ ' is obtained by putting

1 1 .
a-——?z—l, ﬁ=a+l=f_4 in (3.2).

‘This is an example of Kenmotsu manifolds, not hyperbolic spaces, ex-
cept for 7z # 0([5]).
In this context, throughout this paper, N{«, 3) will denote a (2n +

1)-dimensional Kenmotsu manifold whose curvature tensor is the form
(3.1) with smooth functions a and 8 = a+1 on N. Obviously, N(«, 3)
is an n-Einstein mamiold.

For a harmonic map f : (M,g) — N(a,3), we obtain from (3.1)
and (3.2)

m 2n41

(3.3) Tr(Rg) = Z h(R(Va, fres) foesrVa)

i=] a=1

= 4(on + Ble(f) — 28(n + V)| £l

(3.4)

m 2n-+]

Tr(Re%) = > > h(Rn(va, fr&)) foes, Ri(Va, fe;) fues)

t,j=1 a=1
= {(2n — L) + 408 + B} (trf*h)’
+ (@ + 98%)| fR|* - 6ap|| fr@|°

+(~408 - 165°) Y u(faes)n(fue;)h((foes, fre5)

t,j=1

+2(n + 7)B% £l
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(3.5)
. m  2n+4+1
BRVL = 30 3 A(BA(SaCur S, )0ms 0)R(Bu(fais Fo&s Y0as 00)
,)=1a,b=1

= =2(a” + B F*Rl° +8aB D n(fe)n(fuey)h(fres, fuey)

t,j=1
+2(a? + B (trf*h)® — 8af(tr f*R)|| 0l
+ {1208 + 88%(n + L)Y f*@||°,

where m = dimM, l|f*"'?“2 = ey n{fee)n(feen), “f*q)“2 =

2, 3=1
h(feen dfaer)’, I1FR)? = S0 ) h(fuen, fuey)?, {e,ti =1, ,m}
is a local orthonormal frame field on M, and {v, :a =1, --- ,2n+ 1}

is a local orthonormal frame field on N(a, 3).

Thus substituting (3.3) ~ (3.5) into (2.2) ~ (2.4), we get

PROPOSITION 2 For a harmonic map [ : (M,g) — N{o,3) of an
m-dimensional compact Riemanman manifold (M, g) into a (2n + 1)-
dimensional Kenmotsu monsfold N(a, 3). Then the coeffictents ag(Jy),

ai{Jy) and ay(Jy) of the asymptotrc expansion for the Jacobr operator
Js are respectively given by

(3.6) ap(Jr) = (2n+ V)Vol(M,g),

(3.7)

a1 (Jg) = Q’%ll /M Tedug — 28(n + 1) /M |[f'n[]2dvg

+ 4((1‘TL + ﬁ)E(f)v
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(3.8)
2n + 1 2 9
az(Jf) = 360 M{5ng - 2"99" + 2"Rg” ]d"’g

+ 15 [ @ IR - 32008+ 35) Y nlfedn(fie)

z2,0=1

X h(fo€r, fre,) + 16{(3n — 2)a? + 608 + 82 }e(f)?
+ 160 0| *e(f) — 8{6af8 + B2 (n + L)} f @}

+12n - TSy + 5 [ (an + Bl F)av,

1 :
- 5/ Bn+ DI £ nl|* rydvg.
M

4, isormetricminimaidmmersions

Let (N, h) be a (2n + 1)-dimensional Kenmotsu manifold and f :
(M, g) — (N, h) be an isometric immersion of a Riemannian manifold
(M, g) into (N,h). fis called an nvanant smmersion if ¢(f.TM) C
fTM and £ is tangent to f(M) everywherc on M If f is an invariant
immersion, then the immersion f is minimal. f is called an tangen-
tial{ normal resp.) anti-invariant immersion if §{ fLTM)LfL,TM and £
is tangent{normal resp ) to f(M) everywhere on M.

PROPOSITION 3 Let f and f' be 1somelric minumal itmmersions of
compact Riemannian manifolds (M, g) and (M',g") winto an n-Ewnstein
manifold, respectively. Assume that Spec(J;) = Spec(Jp} and the

structure vector field £ 1s normal (or tangent) to both f(M) and f'(M’)
Then we have

(1) dim(M) = dim{M'),
(i) Vol(M,g) = Vol(M', "),

(ii1) f ngvg:/ Ty dUgr.
M M!
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PrROOF (i) follows from the asymptotic expansion (2.1), (ii) ~ (iii)
from (2.2) and (2.3).

PROPOSITION 4 Let f, f' be invariant immersions of compact Rie-
manmian manifolds (M, g) and (M', ') wmio a Kenmotsu manifold N (o, ).
Assume that Spec(J¢) = Spec(Jy:). If f 15 a totally geodesic immer-
ston, then so is f'.

PROOF Since the invariant immersion f is minimal, using the struc-
ture equation of Gauss and (3.2), we see that the scalar curvature is
given by

7= (m— 1)(ma + 8) + || B,

where || BJ|? denotes the square of the norm of the second fundamental
form B of the immersion f. Hence from (iii) of Proposition 3, we get

i 2
1B dn, = [ 1B asy,

where B’ denotes the second fundamental form of the immersion f,
which gives the proof.

PROPOSITION § Let f, f' be tangential or normal anti-invartant,
munmamal immersions of compact Riemannian mamfolds (M, g), (M', ¢')
mto o Kenmotsu manifold N(a, 3). Assume that Spec(Jy) = Spec(Jy+).
If f is a totally geodesic immersion, then so is f'.

PRrOOF. If f is minimal, tangential(resp. normal) anti-invariant,
then the scalar curvature is given by 7, = (m — 1)(mo — 23) + [|B||2

(vesp. Ty = m(m— 1)a+ || Bf|?). Then one can argue as in the preceding
proof.

LEMMA 6 Let f, f' be 1sometric minimal immersions of compact
Riemannian manifolds (M, g) into a Kenmotsu manifold N(o, 3)(8 #
0). Assume that Spec(Jg) = Spec(Js). Then £ is tangent(resp. nor-
mal) to f(M) of and only 1f £ 1s tangent(resp. normal) to f'(M).
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1
PRrROOF. Since f and f’ are isometnc immersions, e(f) = ~dim(M) =

e(f'). It is clear from (3.6) and (3.7) that

(4.1) fM fnl2dv, = [M £l dv,

First, if £ is tangent to f(M), then the equation (4.1) implies that
.2
j{w dvg = /M I/ all " dvg

since || f*n||® = 1. From this equation, we get 1 = || f"*5]°.

Now we put £ = £ + £7, where ¢!{resp. £") denotes the tangen-
tial{resp. normal) component of ¢ with respect to f'(M) and the
melric.h. Then the above equation gives

h(€,€) =1=Y _n(fle.)’ = h{fie., &) = h(g', €Y,
=1 i=1

which implies that £* =0, i.e., £ is tangent to f'(M), where {e, ; ¢ =
1,--- ,m} is a local frame field on M. The converse is similar.

Next, if £ is normal to f(M), then the left hand side of the equation
(4.1) vanishes. Hence ||f*n|> =0 if and only if 37, f*n(e)? =

=1

S h(flei, €)% = 0. This implies that £ is normal to f/{M).

LEMMA 7 Let (N,$,£,n,h) be a (2n + 1)-dimenstonal almost con-
tact metric manifold. Let f be an isomeiric unmersion of an m-

dimensional compact Riemannian manifold (M,g) into (N,h). Then
we have the mequality

0< [ 15 @I vy < AVallM, 9
M

where A denotes m — 1 or m according as £ 13 tangent or normal to
F(M), respectively.

Moreover,
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(1) the equally

[ el dv, = (m— 1) Vol(M, )
M

kolds if and only of f 15 an tnvarant immersion, and

(12) the equality
* 2
o= [ 18|
M

holds if and only +f [ 13 an antinvariant tmmersion.

PROOFP. First, to prove the inequality, we only have to show
0<ffre® <A

at each point of M. Take an orthonormal basis {e, ; i = 1,--- ,m} of
the tangent space T, M at x € M. Then we get

m

1£2@1” = " h(dfues, fue))h($fuesr fuey)

t,3=1

= Y h(Pfie,, fue))B(Pofres, fre;)

t,2=1
= Z h(Pqu*e,, P¢ftez))
i=1

where P is the orthogonal projection of Ty N onto f,T, M with re-
spect to the metric . Hence we obtain

0< "f*¢H2 < Zh(¢f*ezt¢f*et)‘
=1

Since {f.«e; ; j =1,-+- ,m} is an orthonormal basis of f.T, M, we get

Z h(¢f*6h ¢’f#ez) = Z{h(fkez, )‘mei) - n(f*e'i)n(f*el)}
=1 =1

=m — Zh(f*en E)h(f*eta f) = A
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Next, if f,, || /*®||° dvg = (m — 1)Vol(M, g), we have

nf‘q)“z =m—1 <:$P¢f*et zd)fteu t=1,---,m
> ¢fuToM C f.T.M, at each pointx € M,

<= the 1mmersion f is invariant.
If0= [, |f*®)°, we have

17| =0 = Pofie,=0,i=1,-- . m
<= h(f. X,¢f.Y) =0 for any vector fields X, Y on M
<= fis anti-invariant.

THEOREM &8 Let f, [’ be wsomeirc minimai ymmersions-of a com-
pact Riemannian mamfold (M,g) mto a Kenmotsu manifold N(a, 3)
unth 3 # 0. Assume that Spec(Jy) = Spec(Jy). Then

(@) of f 1s an invamant immersion, then so s f,
(b) i f 13 a tangential antr-mvaranl immersion, then so 1s [,

(c) of f 1s a normal anti-tnvariant immersion, then so is f'.

PROOF. Since f, f' are isometric immersions, we have

e(f) =els) = gm, IFRIP = 1 R)E = m.

Moreover, if £ is tangent or normal to f(M), then

> nlfemlfie)h(fues, fueg) = [l =
t,)=1

=190° = 3 n(fiedn(fle)h{fle, fies)

1,)=1
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because of Lemma 6, where ¢ = 1 or 0 according as § is tangent
or normal to f{M), respectively, and {e, : i = 1,--- ,m} is a local
orthonormal frame field on M. Thus (3.8) implies that

(4.2) /M @) du, = /M £ @) 2do,.

Then (a) follows from (i) in Lemma 7, (4.2) and Lemma 6. The re-
mained parts (b) and {c) also follow from (ii) in Lemma 7, (4.2) and
Lemuna 6. Hence we cowpleie Lhe proof.
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