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ON THE SPECTRAL GEOMETRY FOR
THE JACOBI OPERATORS OF HARMONIC

MAPS INTO KENMOTSU MANIFOLDS

Tae Ho Kang

Abstract When the target manifold is certain Kenmotsu manifolds, 

we characterize invariant immersions, tangential anti-invanant immer­

sions and normal anti-mvariant immersions by the spectra of the Ja­

cobi operator

1. Introduction

The spectral geometry for the second order operators arising in Rie- 
mannian geometry has been. studied by many authors. Among them, 
the spectral geometry for the Jacobi operator of the energy of a har­
monic map was studied in [4,7] (for manifolds) and ｛이 (for Riemanman 
foliations) 5 and for the Jacobi operator of the area functional was stud­
ied in [1,3]- The Jacobi operator of a harmonic map arises in the second 
variation formula of the energy of a harmonic map This formula can 
be expressed in terms of an, elliptic differential operator (called the 
Jacobi operator) defined on the space of cross sections of the induced 
bundle of the target manifold.

In this paper, we shall study the spectral goemetry for the Jacobi 
operator of a harmonic map when the target manifold is Kenmotsu 
manifolds.
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2. Preliminaries

Let (M,g) be an m-dimensional closed (i.e., compact without bound­
ary) Riemannian manifold with the metric g and (TV, h) be an n-dimen- 
sional Riemannian manifold with the metric h,

A smooth map f : (M, g) ——> (TV, fi) is said to be harmonic if it is a 
critical point of the energy functional 玖 which is defined by E(f、):= 
fM e(/)dvp, where the energy density e(/) of f is defined to be e(/):= 
* £二\ f*et) (/* is the differential of £ {e± - - - em} a local
orthonomal frame field on Af, and dvg the volume element with respect 
to g).

Let us consider the Jacobi operator Jf for a harmonic map f defined 
by JfV = A/V —RfV for V E「(E) (the space of smooth sections of 
the induced bundle f*TN =: E of the tangent bundle TN ), where 
A is the rough Laplacian associated to the induced connection V oi E 
definsd by V% V := 卩 ( f。호 이고y vectorj&eld^ on M, '砂 the Levi- 
Civita connection of the metric h ), and RfV := Rh，V
(Rh is the Riemannian curvature tensor of (TV, h) ). In this paper, we 
take the convention Rh(XyY) := -▽役 却 where X^Y are
vector fields on N. Then Jf is self-adjoint, elliptic of second order and 
has a discrete spectrum as a conseqence of the compactness of M.

Consider the semigroup given by

eS(x)= [ K(t,x,y,Jf)V(y)dv9(y),
Jm

where K(t^xyy,Jf) e Hom(Eyy Ex) is the kernel function G 
Af, Ex is the fibre of E ove호 x). Then we have asymptotic expansions 
for the L2-trace

oo oo
(2.1) 為(e—皿) =£厂人 ~ (4混厂플 £任如(心) (Q0+),

t=l n=0

where each an(Jy) is the spectral invariant of Jf、which depends only 
on the discrete spectrum ;

S，pec(J，) = {人1《入2 M • V 人z …• T +。。}.
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Applying the Jacobi operator Jy of a harmonic map f to Gilkey's 
results([2]), H.Urakawa([7]) obtained

(2.2) a0(J/) = n , Vol(M.g'),

(2.3) ai(JQ = 슬 /' rgdvg+ [ Tr(Rf)dvg,
0 JM JM

(2.4) 蝕(丿/) = §航 - 2山시|2 + 2\\Rg\[2>)dVg

1 r 日2
+ §6° 丿丿―쎄‘‘ " + 60財”•㈤•)

+ 18QTr(Rf2)]dvg,

where RY is the curvature tensor of the connection V on 玖 which is 
defined by RN :— f*Rh, and Rgrpg-, rg are the curvature tensnr._Jlicci 
tensor, scalar curvature on Af, respectively

3. The caculation of spectral invariants

Let (饱be the almost contact metric structure([5,9]) of the 
almost contact Riemannian manifold N. This means that

&2 = —I + & 伝}玲 ©(f) = 0 = 77。饱

(3.1) 相=1, 狀海”)=~h{X^Y\
术又、)=狀又,》

where © is a tensor field of type (1,1), £ a vector field, 77 a 1-form, I 
the identity transformation, h a Riemannian metric and 幻 Y vector 
fields on N. Define a 2-form $ on TV by :— h(文/)V、) for any
vector fields X, Y on N.

In an almost contact Riemannian manifold N)if the Ricci tensor ph 
satisfies ph = ah 누 br} Q)77, where a and b are smooth fuctions on TV, 
then it is called an r/-Emstein manifold.

PROPOSITION 1 Let /, J디 be harmonic maps of compact Riemann­
ian manifold (M’g) mto an ^q-Eznstem mamfold (TV, whose
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Ricci tensor ph %s of the form ; ph = 사】，+ 如 ® 门 with a(尹 0) and 
b are some smooth functions on N. If Spec(Jf) = Specf) and 
the structure vector field g is normal to both /(M) and then
E(・f) = E(/)

Proof. From (2.3), we get

2aE(/) + b [ |Lf物3% = 2aE(f) + b / ||广이|勺%. 

Jm Jm

But ||/*?/||2 = 0 = ILF*끼广 because of the normality of the structure 
vector field & which completes the proof.

K.Kenmotsu([5]) studied a class of almost contact Riemannian man­
ifolds which satisfies the following conditions ;

(v^)y = -mY肉又-狀文,仃)& 

理=又- 〃(文)e

for any vector fields X^Y on N. One call such manifolds Kenmotsu 
manifolds. It has been shown([5]) that a Kenmotsu manifold (TV, 0, & 门)h) 
has constant ^-sectional curvature k if and only if

(3-2)
h(R(X, Y)Z,W) = a{h(Y, Z)h(X, W} - h(X, Z)h(Y, W)} 

十Eg文)，7(力状匕而+ ^YMW)h(X, Z) 
--爪部7須)技文,布) 

+①(文,z)$(iv, y) -臥文,命)臥么y) 

-2①(文,P)鱼(么I私)}

for any vector fields X, K, Z, W on N, where a = 스云으, /3 = a+l = 스寺丄. 
It is known([5]) that a Kenmotsu manifold with constant (^-sectional 

curvature k is nothing but the hyperbolic space with constant curvature
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Now consider another example i.e., a warped product space N = 
L Xf where F denotes a Kaehlerian manifold and /(t) = ce1 a 
warping function on a real line L(c is a nonzero constant). Then N 
admits an almost constact metric structure. In particular, when F 
is the complex projective space with constant holomorphic sectional 
curvature 4, the curvature tensor of N = L x / F is obtained by putting

0；=戸-1, 8 =。+1 =戸 in (3-2).

This is an example of Kenmotsu manifolds, not hyperbolic spaces, ex­
cept for J4 쿠4 0([5]).

In this context, throughout this paper, N(3) will denote a (2n + 
l)-dimensional Kenmotsu manifold whose curvature tensor is the form
(3.1) with smooth functions a and /3 = a + 1 on N. Obviously, N(%们 
is an Tj-Emstein manitoid.

For a harmonic map f : (M,g) ——> we obtain from (3.1)
and (3.2)

m 2n+l
(3.3) Tr(Ky) = £ £: h(Rh&, f*eJf*ez,Va)

i=l a=l

=4(an + /3)e(/) 一 2/3(n + 1)||/*刑七

(3.4)
m 2n+l

=£ £ h(Rh侦q*M)f*es Rh&, £為)上為) 

1 a=l

={(2n — l)n；2 + 4a/3 + /32)(fr/*A)2
十 ("+9伊)||尸세2 一位沏I尸到2

m
+ (—4叫3 — 16/?2) £ M了*乌为(/*勺)九((£&, 了*勺)

+ 2(孔+ 7)021] 尸끼|4,
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(3.5)
2 m 2n-|-l

||-RV|| = £ £ MRh(J*ez,f*e：)Ma,Pb)m、Rh(J*ei,f*e3)PaKb) 
t,j = l <1,6=1

m
= -2(a2 + 月2)||广이|2 + &必3 £ 1心*eMf*eMJ*e提*ej

i J=1
+ 2(q2 十 月2)(圮/%)2 一 8必(圮f*硏广께2
+ {12 이3 + 80%z+i)}]|jF||2,

where m = dimAf, ||尸께2 ：= £方 术丄晶負(」*6), ||•广①俨 := £^=1 

狀/*弓,好*勺)七 II/*시F ：= £爲=] 九(/*%,/*勺)2, {ez : i = 1, ■ ■ ■ ,m} 
is a local orthonormal frame field on M, and {va : a = 1, • • • , 2n + 1} 
is a local orthonormal frame field on 7V(q,/3).

Thus substituting (3.3) ~ (3.5) into (2.2)〜(2.4), we get

Proposition 2 For a harmonic map f : (M)g)——> 7V(q,/3) of an 
m-dimensional compact Riemanman manifold (Af,g) into a (2n + 1)- 

dzmensional Kenmotsu manifold 7V(q, (3). Then the coefficients Q()(/f), 

a\(Jf、) and (/〈Jf、) of the asymptotic expansion for the Jacobi operator 
Jf are respectively given by

(3.6) «o(Jf) = (2n+l)Vol(M.gl

(3.7)

adJf) = '저，: D f TgdVg - 2/?(n + 1) / ILf*께F% 
0 JM Jm

+ 4((m + 0)E(/),
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(3.8)
«2(J/) = 2쁘丄 L&T： - 에/싱|2 + 에惭2照

1 f m
十 〒5 / ［8(a? + ‘伊2)||广이I? — 32(a/3 + 3/32) £：，心'*勺)7?(/*勺)

dim(M) =
Vol(M.g) = Vol(M\gf\

12 Jm 斜

X h(J*, /*勺) + 16((3n 一 2)ck2 + 6이3 + /?2}e(f)2

+ 16이이I尸用作仃) - 8{6叫3 + (3\n +

+ 12(n + 7)021］广，湖4杞％ + ： / (an 4-夕)乌e(/)c也
3 Jm

—；/ 0(n + l)ll/S『7g%・

<5 JM

4. 둩뭖。m砒或cminimai点mm军滲成ons

Let (시］ h) be a (2n + l)-dimensional Kenmotsu manifold and f : 
(Af, g) —> (TV, K) be an isometric immersion of a Riemanman manifold 
(Af, g) into (TV, h). f is called an invariant immersion if 0(/+TM) C 
f*TM and f is tangent to /(M) everywhere on M If f is an invariant 
immersion, then the immersion f is minimal, f is called an tangen- 
t%al(normal resp.)anti-mvariant immersion if《认M、)보M and £ 
is tangent (normal resp ) to f(M) everywhere on M.

Proposition 3 Let f and f be isometric minimal immersions of 
compact Rzemanman mamfolds and into an r)-Eznstein
manifold, respectively. Assume that Spec(Jf) = Spec(Jfi) and the 
structure vector field is normal (or tangent) to both f(M) and f\Mf) 
Then we have

(i)
(ii)

(iii) ' 丁0七=/ Tg'dVg'.
M JM1
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Proof (i) follows from the asymptotic expansion (2.1), (ii) ~ (iii) 
from (2.2) and (2.3).

Proposition 4 Let /,尸 be invanant immersions of compact Rie- 
mannian manifolds (Af, g) and mto a Kenmotsu manifold TV (a, /?).
Assume that Spec(Jf) = Spec(Jff\ If f ts a totally geodesic immer­
sion, then so is f.

Proof Since the invariant immersion f is minimal, using the struc­
ture equation of Gauss and (3.2), we see that the scalar curvature is 
given by

% = (m - l)(mai + 仞 + ||B||2,

where ||B||2 denotes the square of the norm of the second fundamental 
form B of the immersion f. Hence from (iii) of Proposition 3, we get

[ H 이1有% = / II」引 2 如,,
Jm Jm，

where Bf denotes the second fundamental form of the immersion /z, 
which gives the proof.

Proposition 5 Let /, fl be tangential or normal anti-invariant, 
minimal immersions of compact Riemanman manifolds 
into a Kenmotsu manifold /?). Assume that Spec(Jf) = 尸).
If f is a totally geodesic immersion, then so is f.

Proof. If f is minimal, tangential(resp. normal) anti-invariant, 
then the scalar curvature is given by % = (m — l)(ma — 2。) + ||.B||2 
(resp. rg = m(m— l)a+ ||B||2). Then one can argue as in the preceding 
proof.

Lemma 6 Let £ ff be isometnc minimal immersions of compact 
Riemannian manifolds (M, g) into a Kenmotsu mamfold ^)(/3 丰 
0). Assume that Spec(Jf) = Spec(Jf) Then g is tangent(resp. nor­
mal) to /(Af) zf and only if is tangent(resp, normal) to
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(/) = -dim(M)= 
厶

PROOF. Since / and /z are isometric immersions, e 

e(//). It is clear from (3.6) and (3.7) that

(4.1) / y*T]^dVg = ( I成*찌|2 血 g.
Jm Jm

First, if $ is tangent to /(M), then the equation (4.1) implies that

dV9 = / I'/* 끼I"% 
Jm

since || 尸끼卩 = 1. From this equation, we get 1 = ||J리*?刃仁
Now we put 6 = S + 顼七 where ^(resp.顼‘)denotes the tangen- 

tial(resp. normal) component of £ with respect to /Z(M) and the 
metric Then the above equation gives

m m
= 1 = 〃(以ej2 =

which implies that = 0, i.e., f is tangent to ff(M\ where (et ; z — 
1, ••- , m} is a local frame field on M, The converse is similar.

Next, if g is normal to /(M), then the left hand side of the equation
(4.1) vanishes. Hence ||//*t)|| = 0 if and only if EUi /z*^(et)  = 
£愷丄龙(J"令,£)2 = 0. This implies that £ is normal to

2 2

Lemma 7 Let (N,(如&功九)&e a (2n + 1)-dimensional almost con­
tact metric manifold. Let f be an %sometnc immersion of an m- 
dimensional compact Rzemannian manifold (M)g) into (TV, 7i). Then 
we have the tnequahty

o< [ \\r^\\2 dvg < XVol(M.g) 
Jm

where X denotes m ~ 1 or m according as is tangent or normal to 
f (M), respectively.

Moreover,
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（2） the equality

[ II 广회2 如 = 伽一i） 响 （M,g） 
Jm

holds if and only f is an invariant immersion, and
（zi） the equality

0= [ ILEir
Jm

holds if and only if f is an anti-znvariant immersion.
PROOF. First, to prove the inequality, we only have to show

o < iir^ii2 < a,
at each point of M. Take an orthonormal basis {et ; i = 1, ••- , of 
the tangent space TXM at a; G M. Then we get

m
ll/*^*ll2 = £ 狀。/*%/*勺）狀村*%,/*勺）

m
=臥啓丄@,*：沖（]>妇*土,丄為）

幻J=1
m

=£ h，（、P<bf*% P好*ej,
i=l

where P is the orthogonal projection of 幻•（工）N onto f^TxM with re­
spect to the metric h. Hence we obtain

m
o彳I广到七£火好*eMJ"）

Z=1

Since {/*勺；项= L •…is an orthonormal basis of f^TxM, we get 
m m

。/*以）=£{狀/*以,/*勺）一水/*乌）77（£@）}
1=1 Z=1

m
=m — g）力（/*弓,Q = A.

2=1
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Next, if fM ||/*$||2 dvg = (m 一 l)Vol(A幻g), we have

= m — 1 v느。= 时4 / = 1
v=후 <l>f*TxM C /*TrM, at each point x € M, 

the immersion f is invariant.

If。= Jm ILf*히|2, we have

||f*垂『=0 <=》P村*e* = 0,2 = 1,…,m
<=》h(J*XqLY) = 0 for any vector fields X, Y on Af 
V=》/ is anti-invariant.

THEOREM 8 Let /, ff be isometrzc mimmal immersions-oj a com­
pact Riemannian mamfold (M)g) into a Kenmotsu mamfold N(% /3) 
with 尹 0. Assume that Spec(Jf) = Spec(Jff). Then

(a) if f is an invariant immersion, then so is J디〉

(b) if f is a tangential anti-znvarzant immersion, then so is /z,
(c) if f ts a normal anti-invanant immersion, then so is

Proof. Since /, ff are isometric immersions, we have

e(/) = e(F) = 由, ||f* 시 |2 = Ilf* 세 2 = m. 
厶

Moreover, if f is tangent or normal to /(Af), then

m
£ 〃(/*虹肉(了*勺)九(/*弓,/*勺) = |Lf*끼|2 =" 

z,j = L
m

= II■尸*께2 = £ 〃(/Eez)77(/：e?)狀/:弓, /农“)

3 = 1
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because of Lemma 6, where /z = 1 or 0 according as & is tangent 
or normal to /(Af), respectively, and {et : i = 1, ••- , m} is a local 
orthonormal frame field on M. Thus (3.8) implies that

(4-2) [ II 广회 2 如 = f ||/F ||2如.
Jm Jm

Then (a) follows from (i) in Lemma 7, (4.2) and Lemma 6. The re­
mained parts (b) and (c) also follow from (ii) in Lemma 7, (4.2) and 
Lemma 6. Hence we coniplete the pi oof.
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