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REAL HYPERSURFACES IN A NON-FLAT COMPLEX

SPACE FORM WITH LIE RECURRENT STRUCTURE

JACOBI OPERATOR

George Kaimakamis and Konstantina Panagiotidou

Abstract. The aim of this paper is to introduce the notion of Lie recur-
rent structure Jacobi operator for real hypersurfaces in non-flat complex
space forms and to study such real hypersurfaces. More precisely, the
non-existence of such real hypersurfaces is proved.

1. Introduction

A complex space form is an n-dimensional Kaehler manifold of constant
holomorphic sectional curvature c and it is denoted by Mn(c). A complete and
simply connected complex space form is complex analytically isometric to

• a complex projective space CPn if c > 0,
• a complex Euclidean space Cn if c = 0,
• or a complex hyperbolic space CHn if c < 0.

Let M be a real hypersurface in non-flat complex space form Mn(c), c 6=
0. Then an almost contact metric structure (ϕ, ξ, η, g) can be defined on M

induced from the Kaehler metric G and the complex structure J on Mn(c).
The structure vector field ξ is called principal if Aξ = αξ, where A is the shape
operator of M and α = η(Aξ) is a smooth function. A real hypersurface is said
to be a Hopf hypersurface if ξ is principal.

The study of real hypersurfaces in Mn(c), c 6= 0, is a classical problem in the
area of Differential Geometry. In [10], [11] Takagi was the first who studied and
classified homogeneous real hypersurfaces in CPn and showed that they could
be divided into six types, namely (A1), (A2), (B), (C), (D) and (E). In the
case of CHn, Berndt in [1] classified real hypersurfaces with constant principal
curvatures, when ξ is principal. Such real hypersurfaces are homogeneous.
Recently, Berndt and Tamaru in [2] have given a complete classification of
homogeneous real hypersurfaces in CHn, n ≥ 2.
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The Jacobi operator with respect to X on M is defined by R(·, X)X , where
R is the Riemmanian curvature of M . For X = ξ the Jacobi operator is called
structure Jacobi operator and is denoted by l = R(·, ξ)ξ. It has a fundamental
role in almost contact manifolds. Many researchers have studied real hyper-
surfaces in terms of the structure Jacobi operator.

The Lie derivative of the structure Jacobi operator is an issue, which has
been extensively studied. More precisely, in [6] Pérez and Santos proved the
non-existence of real hypersurfaces in CPn, n ≥ 3, whose structure Jacobi
operator is Lie parallel, i.e., LX l = 0 for any X ∈ TM . On the other hand,
real hypersurfaces in CPn, n ≥ 3, equipped with Lie ξ-parallel structure Jacobi
operator, i.e., Lξl = 0, are classified by Pérez et al. in [8]. Ivey and Ryan in
[3] extend some of the above results in CP 2 and CH2. More precisely, they
proved that in CP 2 and CH2 no real hypersurfaces whose structure Jacobi
operator is Lie parallel exist, but real hypersurfaces in CP 2 and CH2, whose
structure Jacobi operator is Lie ξ-parallel exist and gave a classification of
them. Additionally, they proved that no real hypersurfaces in CPn or CHn,
n ≥ 3, equipped with Lie parallel structure Jacobi operator exist. Recently,
in [9] Pérez and Suh studied the condition of Lie D-parallel structure Jacobi
operator, i.e., LX l = 0, where X is orthogonal to ξ. They proved that no
Hopf real hypersurfaces in CPn, n ≥ 3, satisfying the previous condition exist.
Extending the previous work, in [5] the non-existence of three dimensional real
hypersurfaces in non-flat complex space forms, whose structure Jacobi operator
is Lie D-parallel was proved.

Generally, a tensor field P of type (1,1) on M is called recurrent if a 1-form
ω on M exists and the following relation is satisfied (∇XP )Y = ω(X)P (Y ), X ,
Y tangent to M . The condition of recurrent structure Jacobi operator has been
studied. More precisely in [7] the non-existence of real hypersurfaces in CPn,
n ≥ 3, whose structure Jacobi operator is recurrent is proved. Furthermore, in
[12] is proved that no three dimensional real hypersurfaces in non-flat complex
space forms equipped with recurrent structure Jacobi operator exist.

Motivated by all the above the following question raises naturally:

Question. Are there real hypersurfaces in non-flat complex space forms with
Lie recurrent structure Jacobi operator?

First of all, we call the structure Jacobi operator of a real hypersurface Lie

recurrent, when the following relation is satisfied

(LX l)Y = ω(X)lY,(1.1)

where X,Y ∈ TM and ω is a 1-form.
In this paper, we suppose that ω 6= 0, because if ω = 0, then LX l = 0

and this is the Lie parallelness condition. The following result is obtained and
proved:

Main Theorem. There exist no real hypersurfaces in Mn(c), n ≥ 2 and c 6= 0,
whose structure Jacobi operator is Lie recurrent.
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It would be interesting to study also the condition of Lie recurrency for
the shape operator A, i.e., (LXA)Y = ω(X)AY , or the structure tensor ϕ,
i.e., (LXϕ)Y = ω(X)ϕY . Furthermore, the Lie D-recurrency is another issue
which appears appealing to be studied, i.e., (LXP )Y = ω(X)PY , where X

orthogonal to ξ, Y ∈ TM and P is a tensor field of type (1,1).

2. Preliminaries

Throughout this paper all manifolds, vector fields etc. are assumed to be of
class C∞ and all manifolds are assumed to be connected. Furthermore, the real
hypersurfaces are supposed to be oriented and without boundary. Let M be a
real hypersurface immersed in a non-flat complex space form (Mn(c), G) with
complex structure J of constant holomorphic sectional curvature c. Let N be
a unit normal vector field on M and ξ = −JN . For a vector field X tangent to
M we can write JX = ϕX+ η(X)N , where ϕX and η(X)N are the tangential
and the normal component of JX , respectively. The Riemannian connections
∇ in Mn(c) and ∇ in M are related for any vector fields X , Y on M :

∇Y X = ∇Y X + g(AY,X)N,

∇XN = −AX,

where g is the Riemannian metric induced from the metric G and A is the
shape operator of M in Mn(c) with respect to N . M has an almost contact
metric structure (ϕ, ξ, η, g) induced from J on Mn(c) where ϕ is a (1,1) tensor
field and η a 1-form on M such that

g(ϕX, Y ) = G(JX, Y ), η(X) = g(X, ξ) = G(JX,N).

Then we have

(2.1)

ϕ2X = −X + η(X)ξ, η ◦ ϕ = 0, ϕξ = 0, η(ξ) = 1,

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), g(X,ϕY ) = −g(ϕX, Y ),

∇Xξ = ϕAX, (∇Xϕ)Y = η(Y )AX − g(AX, Y )ξ.

Since the ambient space is of constant holomorphic sectional curvature c, the
Gauss and Codazzi equations are respectively given by

R(X,Y )Z =
c

4
[g(Y, Z)X − g(X,Z)Y + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY(2.2)

− 2g(ϕX, Y )ϕZ] + g(AY,Z)AX − g(AX,Z)AY,

(∇XA)Y − (∇Y A)X =
c

4
[η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ],(2.3)

where R denotes the Riemannian curvature tensor on M and X , Y , Z are any
vector fields on M .

Relation (2.2) implies that the structure Jacobi operator l is given by:

lX =
c

4
[X − η(X)ξ] + αAX − η(AX)Aξ,(2.4)

where α = η(Aξ).
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For every point P ∈ M , the tangent space TPM can be decomposed as
following:

TPM = span{ξ} ⊕ D,

where D = {X ∈ TPM : η(X) = 0}. Due to the above decomposition, the
vector field Aξ can be written:

Aξ = αξ + βU,(2.5)

where β = |ϕ∇ξξ| and U = − 1
β
ϕ∇ξξ ∈ ker(η), provided that β 6= 0.

3. Case of real hypesurfaces in Mn(c), n ≥ 3 and c 6= 0

In this section, the symbol Mn(c) is used to denote CPn and CHn, n ≥ 3.
Let M be a real hypersurface in Mn(c), whose structure Jacobi operator is Lie
recurrent.

We consider the open subset N of M such that

N = {P ∈ M : β 6= 0 in a neighborhood of P}.

Furthermore, we consider V , Ω open subsets of N such that

V = {P ∈ N : α = 0 in a neighborhood of P},

Ω = {P ∈ N : α 6= 0 in a neighborhood of P},

where V ∪ Ω is open and dense in the closure of N .
Relation (1.1) more analytically is written

∇X(lY )−∇lY X − l∇XY + l∇Y X = ω(X)lY.(3.1)

Lemma 3.1. Let M be a real hypersurface in Mn(c), whose structure Jacobi

operator is Lie recurrent. Then V is empty.

Proof. In V relation (2.5) becomes Aξ = βU . From (2.4) for X = ϕU and
X = ξ we obtain lϕU = c

4ϕU and lξ = 0. Furthermore, the first of (2.1)
implies ∇ξξ = βϕU .

Relation (3.1) for X = ξ and Y = ϕU , due to the first (2.1) yields

c

4
∇ξϕU −

c

4
ϕAϕU − l∇ξϕU + lϕAϕU =

c

4
ω(ξ)ϕU.

The inner product of the last one with ξ, due to lξ = 0 and ∇ξξ = βϕU ,
results in c = 0, which is a contradiction and this completes the proof the
present Lemma. �

Lemma 3.2. Let M be a real hypersurface in Mn(c), whose structure Jacobi

operator is Lie recurrent. Then Ω is empty.

Proof. The inner product of relation (3.1) with ξ, since lξ = 0 and the first of
(2.1) implies

g(lϕAX + lAϕX, Y ) + lY [g(X, ξ)] = 0, X, Y ∈ TM.(3.2)
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Relation (3.2) for X = ξ, due to (2.5), yields: g(lϕU, Y ) = 0 for any Y ∈
TM and this results in lϕU = 0. Then relation (2.4) for X = ϕU implies:

AϕU = −
c

4α
ϕU.(3.3)

Owing to (3.3) we have that g(AU,ϕU) = g(AϕU,U) = 0 and g(AϕU,Z) =
g(AZ,ϕU) = 0 for any Z ∈ DU , where DU is the orthogonal complement to
span{ξ, U, ϕU}.

Suppose that AU = γU + βξ + κZ, where γ = g(AU,U), κ = g(AU,Z) =
g(AZ,U) and Z ∈ DU . Relation (2.4) for X = U and X = Z, because of the
latter yields

lU = (
c

4
+ αγ − β2)U + ακZ and lZ =

c

4
Z + αAZ.(3.4)

Relation (3.2) for X = U , due to lϕU = 0, AU = γU + βξ + κZ and (3.3)
implies: g(κlϕZ, Y ) = 0 for any Y ∈ TM and this leads to κlϕZ = 0.

Let Ω1 be the open subset of Ω such that

Ω1 = {P ∈ Ω : κ 6= 0 in a neighborhood of P}.

Then in Ω1 we have lϕZ = 0 and relation (2.4) for X = ϕZ yields: AϕZ =
− c

4αϕZ.
Relation (3.2) for X = ϕU and X = ϕZ, due to (3.3) and AϕZ = − c

4αϕZ,
implies: g( c

4α lU − lAU, Y ) = 0 and g( c
4α lZ − lAZ, Y ) = 0 for any Y ∈ TM

respectively. From the last two relations we obtain

lAU =
c

4α
lU and lAZ =

c

4α
lZ.

The inner product of the first of the above relations with Z, because of (3.4)
and AU = γU +βξ+κZ implies: g(AZ,Z) = −γ and the inner product of the
second with U taking into account the latter and (3.4) yields β = 0, which is a
contradiction. Therefore, Ω1 is empty.

So in Ω we have κ = 0 and the following holds

AU = γU + βξ, AϕU = −
c

4α
ϕU, lU = (

c

4
+ αγ − β2)U and lϕU = 0.(3.5)

Relation (3.2) for X = ϕU , due to (3.5) implies g[( c
4α − γ)lU, Y ] = 0 for any

Y ∈ TM and this results in

(
c

4α
− γ)lU = 0.

Let Ω2 be the open subset of Ω such that,

Ω2 = {P ∈ Ω : lU 6= 0 in a neighborhood of P}.

Then in Ω2 we have γ = c
4α and relation (3.5) becomes

AU =
c

4α
U + βξ, AϕU = −

c

4α
ϕU, lU = (

c

2
− β2)U, and lϕU = 0.(3.6)
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The inner product of the Codazzi equation (2.3) due to the first two relations
of (3.6) implies

βκ1 +
c

2
+

c2

16α2
=

cκ3

2α
+ β2 for X = U and Y = ξ with ϕU,

(3.7)

(ϕU)β = βκ1 +
c

2
+

c2

8α2
for X = ϕU and Y = ξ with U due to the above,

(3.8)

(ϕU)α = β(α + κ3 +
3c

4α
) for X = ϕU and Y = ξ with ξ,

(3.9)

where κ1 = g(∇UU,ϕU) and κ3 = g(∇ξU,ϕU).
The inner product of relation (3.1) for X = ξ and Y = U with ϕU , because

of (3.6) and since g(∇ξ(ϕU), U) = −κ3 yields:

(
c

2
− β2)(κ3 −

c

4α
) = 0.

Let Ω21 be the open subset of Ω2 such that

Ω21 = {P ∈ Ω2 : β2 6=
c

2
in a neighborhood of P}.

Then in Ω21 we have that κ3 = c
4α and relation (3.9) becomes

(ϕU)α = β(α+
c

α
).

The inner product of Codazzi equation (2.3) for X = U and Y = ϕU with U ,

taking into account (3.6), (3.9) and the last one yields κ1 = − cβ
2α2 . From (3.1)

for X = U and Y = ϕU due to (3.6), we obtain

l∇UϕU = l∇ϕUU.

The inner product of the above relation with U , because of (3.6) and κ1 =
g(∇UU,ϕU) leads to κ1 = 0 and due to the above relation for κ1 we obtain
c = 0, which is impossible. Therefore, Ω21 is empty.

So in Ω2 we have that β2 = c
2 and relation (3.7) becomes

βκ1 =
cκ3

2α
−

c2

16α2
.(3.10)

Differentiation of β2 = c
2 with respect to ϕU implies: (ϕU)β = 0. The latter,

taking into account (3.8) yields: βκ1 = − c
2 − c2

8α2 . Substitution of the last
one in (3.10) implies: κ3 = − c

8α − α. The inner product of Codazzi equation
(2.3) for X = U and Y = ϕU with U , taking into account (3.6), (3.9) and

the last one yields: κ1 = − 5cβ
16α2 + β

2 . Substituting the last one in (3.10) and

κ3 = − c
8α − α and β2 = c

2 leads to: β2 = 12α2. Differentiating the last one
with respect to ϕU and taking into account (3.9), (ϕU)β = 0 and the relation
for κ3, we obtain c = 0 which is a contradiction. So Ω2 = ∅.



LIE RECURRENT STRUCTURE JACOBI OPERATOR 2095

So in Ω we have lU = 0 and (3.5) becomes

AU = (
β2

α
−

c

4α
)U + βξ, AϕU = −

c

4α
ϕU, and lU = lϕU = 0.(3.11)

Let ∇ξU = κ3ϕU + λ1Z1, where Z1 ∈ DU . Then from (3.1) for X = U and
Y = ξ, due to the latter and (2.4) for X = Z1 we obtain λ1(

c
4Z1+αAZ1) = 0.

Let Ω3 be the open subset of Ω such that

Ω3 = {P ∈ Ω : λ1 6= 0 in a neighborhood of P}.

So in Ω3, we have that AZ1 = − c
4αZ1. The inner product of the Codazzi

equation taking into account ∇ξU = κ3ϕU + λ1Z1 and (3.11) implies

Z1α = βλ1 for X = Z1 and Y = ξ with ξ,

g(∇UU,Z1) =
βλ1

α
for X = U and Y = ξ with Z1,

Z1β =
β2λ1

α
for X = Z1 and Y = U with ξ due to the previous one.

Furthermore, the inner product of the Codazzi equation for X = Z1 and Y = U

with U owing to (3.11) and all the above relations results in c = 0, which is a
contradiction. Therefore, Ω3 is empty.

So in Ω λ1 = 0 and ∇ξU = κ3ϕU . The inner product of Codazzi equation,
because of (3.11) yields:

β2κ3

α
= βκ1 +

c

4α
(
β2

α
−

c

4α
) for X = U and Y = ξ with ϕU,

(3.12)

(ϕU)β= β2+ βκ1+
c

2α
(
β2

α
−

c

4α
) for X=ϕU and Y =ξ with U due to (3.12),

(3.13)

(ϕU)α = β(α+ κ3 +
3c

4α
) for X = ϕU and Y = ξ with ξ,

(3.14)

ξα =
4α2βκ2

c
for X = ϕU and Y = ξ with ϕU,

(3.15)

(ϕU)(
β2

α
−

c

4α
) = β(

β2

α
+

βκ1

α
−

3c

4α
) for X = U and Y = ϕU with U,

(3.16)

Uα =
4αβ2κ2

c
for X = U and Y = ϕU with ϕU,

(3.17)

Uα = ξβ =
4αβ2κ2

c
for X = U and Y = ξ with ξ due to (3.17),

(3.18)
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Uβ = βκ2(
4β2

c
+ 1) for X = U and Y = ξ with U due to (3.15) and (3.18),

(3.19)

where κ1 = g(∇UU,ϕU), κ2 = g(∇ϕUU,ϕU) and κ3 = g(∇ξU,ϕU).
Relation (3.16), because of (3.12), (3.14) and (3.13), yields:

κ3 = −4α,(3.20)

and so relation (3.12) becomes:

βκ1 =
c

4α
(
c

4α
−

β2

α
)− 4β2.(3.21)

The Riemannian curvature on M satisfies relation (2.2) and on the other
hand is given by the relation R(X,Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z.
The combination and the inner product of these two relations for X = Z = U ,
Y = ξ with ϕU and X = ξ, Y = ϕU , Z = U and with ϕU , owing to ∇ξ(ϕU) =
(∇ξϕ)U + ϕ∇ξU and the second of (2.1) implies respectively:

Uκ3 − ξκ1 = κ2(
β2

α
−

c

4α
− κ3),(3.22)

(ϕU)κ3 − ξκ2 = κ1(κ3 +
c

4α
) + β(κ3 −

c

2α
).(3.23)

Differentiating the relations (3.20) and (3.21) with respect to U and ξ, re-
spectively and substituting in (3.22) and due to (3.18), (3.15) and (3.20) we
obtain:

κ2(c− 2β2 − 4α2) = 0.(3.24)

Owing to (3.24), let Ω4 be the open subset of Ω such that

Ω4 = {P ∈ Ω : κ2 6= 0 in a neighborhood of P}.

So in Ω4 we obtain: 2β2 +4α2 = c. Differentiation of the last relation along
ξ and taking into account (3.18), (3.15) and 2β2 + 4α2 = c yields: κ2 = 0,
which is a contradiction. Therefore, Ω4 is empty.

Thus, κ2 = 0 in Ω and relations (3.19), (3.18) and (3.15) become:

Uα = Uβ = ξα = ξβ = 0.

Using the above relations and (3.20) we obtain:

[U, ξ]α = U(ξα) − ξ(Uα) = 0,

[U, ξ]α = (∇Uξ −∇ξU)α =
1

4α
(4β2 + 16α2 − c)(ϕU)α.

Combining the last two relations we have:

(4β2 + 16α2 − c)(ϕU)α = 0.(3.25)

Let Ω5 be the open subset of Ω such that

Ω5 = {P ∈ Ω : (ϕU)α 6= 0 in a neighborhood of P}.
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So in Ω5 from (3.25) we have: 16α2+4β2 = c. Differentiating the last relation
with respect to ϕU and taking into account (3.14), (3.13), (3.20), (3.21) and
c = 16α2 + 4β2, implies: α2 = 0, which is impossible. So Ω5 is empty.

Hence, on Ω we have (ϕU)α = 0. Then, relations (3.14), (3.20) and (3.21)
imply: c = 4α2 and βκ1 = α2 − 5β2. On the other hand from relation (3.23),
because of (3.20) we obtain: κ1 = −2β. Substitution of κ1 in βκ1 = α2 −
5β2 yields: 3β2 = α2. Taking the covariant derivative along ϕU of 3β2 =
α2, because of (3.13), we conclude: β = 0 which is a contradiction and this
completes the proof of the present Lemma. �

From Lemmas 3.1 and 3.2, we lead to the following result:

Proposition 3.3. Every real hypersurface in Mn(c), n ≥ 3, whose structure

Jacobi operator is Lie recurrent, is a Hopf hypersurface.

Since M is a Hopf hypersurface, we know that α is constant. Let W ∈ D,
such that AW = λW , then (λ − α

2 )AϕW = (λα2 + c
4 )ϕW at some point P ∈

M .

• Case I: α2 + c 6= 0.

In this case we have that λ 6= α
2 so AϕW = νϕW , where ν = 2λα+c

4λ−2α . The

following relation holds on M (Corollary 2.3 [4]):

λν =
α

2
(λ+ ν) +

c

4
.(3.26)

The first of relation (2.1) and relation (2.4) implies respectively

∇W ξ = λϕW and ∇ϕW ξ = −νW,(3.27)

lW = (
c

4
+ αλ)W and lϕW = (

c

4
+ αν)ϕW.(3.28)

The inner product of relation (3.1) for X = W and Y = ϕW with ξ, taking
into account (3.27) and (3.28) implies

(λ+ ν)(
c

4
+ αν) = 0.

Due to the above relation we consider M1 be the open subset of M such
that:

M1 = {P ∈ M : λ 6= −ν in a neighborhood of P}.

Then on M1 we have that αν = − c
4 . The inner product of relation (3.1)

with ξ for X = ϕW and Y = W due to (3.27) and (3.28) yields: αλ = − c
4 .

Substitution of the last two relations in (3.26) leads to λν = 0. Suppose
that ν 6= 0 then λ = 0 and relation αλ = − c

4 results in c = 0, which is a
contradiction. So ν = 0 and following the same procedure as in the previous
case we lead again to a contradiction. So M1 = ∅.

Therefore on M relation λ = −ν holds.
Substitution of λ = −ν in (3.26) implies c = −4λ2. So we conclude that

c < 0 and that λ, ν are constant. The Hopf real hypersurface which satisfies
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the previous conditions is that of type B in CHn. Substituting the eigenvalues
of it in λ = −ν leads to a contradiction (for the eigenvalues see [1]).

• Case II: α2 + c = 0.

In this case we have that α 6= 0, because if α = 0, then c = 0, which is
impossible. First we suppose that λ 6= α

2 and from relation (3.26), owing to

α2 + c = 0, we obtain that ν = α
2 , where ν is defined as in the previous

case. The inner product of relation (3.1) for X = W and Y = ϕW with ξ,
taking into account (3.27) and (3.28) implies: λ = −α

2 . The inner product of
relation (3.1) for X = W and Y = ξ with ϕW , because of (3.27) and (3.28),
yields g(∇ξW,ϕW ) = −α

2 , and for X = ϕW and Y = ξ with W , because of
(3.27) and (3.28), implies g(∇ξW,ϕW ) = α

2 . The combination of the last two
relations results in α = 0, which is impossible.

So we examine the remaining case of λ = α
2 . That will be the only eigenvalue

for all vectors in D. The inner product of relation (3.1) forX = W and Y = ϕW

with ξ, taking into account (3.27) and (3.28) and that the only eigenvalue is α
2

implies α = 0, which is impossible.
Therefore we have proved that there exist no real hypersurfaces in complex

space forms of dimension higher than or equal to 3, whose structure Jacobi
operator is Lie recurrent.

4. Case of real hypersurfaces in Mn(c), n = 2 and c 6= 0

Let M be a non-Hopf hypersurface in M2(c), c 6= 0. We consider a local
orthonormal basis {U,ϕU, ξ}. Then the following lemma holds.

Lemma 4.1 ([5]). Let M be a real hypersurface in M2(c). Then the following

relations hold on M

(4.1)

AU = γU + δϕU + βξ, AϕU = δU + µϕU,

∇Uξ = −δU + γϕU, ∇ϕUξ = −µU + δϕU, ∇ξξ = βϕU,

∇UU = κ1ϕU + δξ, ∇ϕUU = κ2ϕU + µξ, ∇ξU = κ3ϕU,

∇UϕU = −κ1U − γξ, ∇ϕUϕU = −κ2U − δξ, ∇ξϕU = −κ3U − βξ,

where γ, δ, µ, κ1, κ2, κ3 are smooth functions on M .

We suppose that structure Jacobi operator is Lie recurrent. We consider the
open subset N of M such that

N = {P ∈ M : β 6= 0 in a neighborhood of P}.

Furthermore, we consider V , Ω open subsets of N such that

V = {P ∈ N : α = 0 in a neighborhood of P},

Ω = {P ∈ N : α 6= 0 in a neighborhood of P},

where V ∪ Ω is open and dense in the closure of N .
In this case also relation (3.1) holds.
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Lemma 4.2. Let M be a real hypersurface in M2(c), whose structure Jacobi

operator is Lie recurrent. Then V is empty.

Proof. In V relation (2.5) becomes Aξ = βU . From (2.4) for X = ϕU and
X = ξ we obtain lϕU = c

4ϕU and lξ = 0. Furthermore, the first of (2.1)
implies ∇ξξ = βϕU .

Relation (3.1) for X = ξ and Y = ϕU , due to the first (2.1) yields:

c

4
∇ξϕU −

c

4
ϕAϕU − l∇ξϕU + lϕAϕU =

c

4
ω(ξ)ϕU.

The inner product of the last one with ξ, due to lξ = 0 and ∇ξξ = βϕU ,
results in c = 0, which is a contradiction and this completes the proof the
present Lemma. �

Next we work on Ω.

Lemma 4.3. Let M be a real hypersurface in M2(c), whose structure Jacobi

operator is Lie recurrent. Then Ω is empty.

Proof. The inner product of relation (3.1) with ξ implies

g(lϕAX + lAϕX, Y ) + lY [g(X, ξ)] = 0, X, Y ∈ TM.(4.2)

Relation (4.2) for X = ξ, due to (2.5), yields: g(lϕU, Y ) = 0 for any Y ∈
TM and this results in lϕU = 0. Then relation (2.4) for X = ϕU implies:

AϕU = −
c

4α
ϕU.

So relation (4.1) becomes

AU = γU + βξ, AϕU = −
c

4α
ϕU.(4.3)

Relation (4.2) for X = ϕU , due to (4.3) implies: g[( c
4α − γ)lU, Y ] = 0 for

any Y ∈ TM and this results in

(
c

4α
− γ)lU = 0.

Let Ω1 be the open subset of Ω such that,

Ω1 = {P ∈ Ω : lU 6= 0 in a neighborhood of P}.

Then in Ω1 we have αγ = c
4 . Following the same procedure as in Lemma 3.2

we lead to Ω1 = ∅.
So in Ω we have that lU = 0. The last relation leads to the conclusion that

the structure Jacobi operator l vanishes on Ω. Then from Proposition 7 in [3]
we get that Ω is empty and this completes the proof of the present Lemma. �

From Lemmas 4.2 and 4.3, we lead to the following result.

Proposition 4.4. Every real hypersurface in M2(c), whose structure Jacobi

operator is Lie recurrent, is a Hopf hypersurface.
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Since M is a Hopf hypersurface, due to Theorem 2.1 ([4]) we have that α is
a constant. We consider a unit vector field e ∈ D, such that Ae = µ1e, then
Aϕe = ν1ϕe at some point P ∈ M , where {e, ϕe, ξ} is a local orthonormal
basis. Then the following relation holds on M (Corollary 2.3 [4]):

µ1ν1 =
α

2
(µ1 + ν1) +

c

4
.(4.4)

Relation (2.4) and the first of (2.1) implies respectively:

∇eξ = µ1ϕe and ∇ϕeξ = −ν1e,(4.5)

le = (
c

4
+ αµ1)e and lϕe = (

c

4
+ αν1)ϕe.(4.6)

The inner product of relation (3.1) for X = e and Y = ϕe with ξ and
for X = ϕe and Y = e with ξ, taking into account (4.5) and (4.6) yields
respectively:

(µ1 + ν1)(
c

4
+ αν1) = 0,(4.7)

(µ1 + ν1)(
c

4
+ αµ1) = 0.(4.8)

Suppose that µ1, ν1 are distinct at point P. Because of (4.7) we consider M2

the open subset of M such that

M2 = {P ∈ M : µ1 6= −ν1 in a neighborhood of P}.

So from (4.7) and (4.8) we obtain that αµ1 +
c
4 = 0 and αν1 +

c
4 = 0. The

combination of the last two relations implies α(µ1 − ν1) = 0. Since µ1, ν1 are
distinct the latter implies that α = 0 and substituting that in αµ1 + c

4 = 0
implies c = 0, which is a contradiction. So M2 = ∅.

Therefore in M we have that µ1 = −ν1. Substitution in (4.4) results in
c = −4µ2

1. From the last relation we conclude that c < 0 and µ1 =constant.
The only hypersurface that we have in this case is of type B in CH2. Sub-
stituting the eigenvalues of this hypersurface in relation µ1 = −ν1 leads to a
contradiction (see for the eigenvalues [1]).

So the remaining case is that of µ1 = ν1 at all points. Then from (4.7), we
obtain that either µ1 = 0 or c

4 + αµ1 = 0.

• If µ1 = 0, then substitution in (4.4) implies c = 0, which is a contra-
diction.

• If c
4 + αµ1 = 0, then substitution in (4.4) yields µ1 = 0. Substituting

the last one in c
4 + αµ1 = 0 leads to c = 0, which is impossible.

Therefore, no three dimensional real hypersurfaces in M2(c), c 6= 0, exist
and this completes the proof of Main Theorem.
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