References
- H. Aoki, Estimating Siegel modular forms of genus 2 using Jacobi forms, J. Math. Kyoto Univ. 40 (2000), no. 3, 581-588. https://doi.org/10.1215/kjm/1250517682
-
S. Bocherer and T. Ibukiyama, Surjectivity of Siegel
${\phi}$ -operator for square free level and small weight, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 1, 121-144. https://doi.org/10.5802/aif.2702 - J. Breeding, C. Poor, and D. S. Yuen, Author's website, http://jeffbreeding.com/para_jacobi.
- A. Brumer and K. Kramer, Paramodular abelian varieties of odd conductor, Trans. Amer. Math. Soc. 366 (2014), no. 5, 2463-2516. https://doi.org/10.1090/S0002-9947-2013-05909-0
- J. Brunier, Vector valued formal Fourier-Jacobi expansions, arXiv:1303.3699.2013.
- M. Eichler, Uber die Anzahl der linear unabhangigen Siegelschen Modulformen von gegebenem Gewicht, Math. Ann. 312 (1975), 281-291.
- M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics 55, Birkhauser Verlag, Berlin 1985.
- V. Gritsenko, Irrationality of the moduli spaces of polarized abelian surfaces, Internat. Math. Res. Notices 6 (1994), 9 pages.
- V. Gritsenko, Arithmetical lifting and its applications, Number theory (Paris 1992-1993), 103-126, London Math. Soc. Lecture Note Ser., 215, Cambridge Univ. Press, Cambridge, 1995.
- V. Gritsenko and K. Hulek, Minimal Siegel modular threefolds, Math. Proc. Cambridge Philos. Soc. 123 (1998), no. 3, 461-485. https://doi.org/10.1017/S0305004197002259
- V. Gritsenko and K. Hulek, The modular form of the Barth-Nieto quintic, Internat. Math. Res. Notices 17 (1999), no. 17, 913-937.
- V. Gritsenko and V. Nikulin, Automorphic Forms and Lorentzian Kac-Moody Algebras. II, Internat. J. Math. 9 (1998), no. 2, 201-275. https://doi.org/10.1142/S0129167X98000117
- V. Gritsenko, N. Skoruppa, and D. Zagier, Theta blocks, preprint.
- M. Gross and S. Popescu, Calabi-Yau three-folds and moduli of abelian surfaces II, Trans. Amer. Math. Soc. 363 (2011), no. 7, 3573-3599. https://doi.org/10.1090/S0002-9947-2011-05179-2
- E. Freitag, Siegelsche Modulfunktionen, Grundlehren der mathematischen Wissenschaften, Band 254, Berlin-Heidelberg-New York: Springer-Verlag, 1983.
-
K. Hashimoto and T. Ibukiyama, On Relations of Dimensions of Automorphic Forms of Sp(2,
${\mathbb{R}}$ ) and Its Compact Twist Sp(2) (II), Automorphic forms and number theory (Sendai 1983), 31-102, Adv. Stud. Pure Math., 7, North-Holland, Amsterdam, 1985. - T. Ibukiyama, On symplectic Euler factors of genus two, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1984), no. 3, 587-614.
-
T. Ibukiyama, On relations of dimensions of automorphic forms of Sp(2,
${\mathbb{R}}$ ) and its compact twist Sp(2). I., Automorphic forms and number theory (Sendai 1983), 7-30, Adv. Stud. Pure Math., 7, North-Holland, Amsterdam, 1985. - T. Ibukiyama, Dimension formulas of Siegel modular forms of weight 3 and supersingular abelian surfaces, Siegel Modular Forms and Abelian Varieties, 39-60, Proceedings of the 4-th Spring Conference on Modular Forms and Related Topics, 2007.
- T. Ibukiyama and H. Kitayama, Dimensions of paramodular forms of squarefree level and comparison with inner twist, in preparation.
- T. Ibukiyama, C. Poor, and D. Yuen, Jacobi forms that characterize paramodular forms, Abh. Math. Semin. Univ. Hambg. 83 (2013), no. 1, 111-128. https://doi.org/10.1007/s12188-013-0078-y
- H. Iwaniec, On the problem of Jacobsthal, Demonstratio Math. 11 (1978), no. 1, 225-231.
- D. Mumford, Tata Lectures on Theta I, Progress in Mathematics 28, Birkhauser, Boston 1983.
- C. Poor and D. Yuen, Estimates for dimensions of spaces of Siegel modular cusp forms, Abh. Math. Sem. Univ. Hamburg 66 (1996), 337-354. https://doi.org/10.1007/BF02940813
- C. Poor and D. Yuen, Linear dependence among Siegel modular forms, Math. Ann. 318 (2000), no. 2, 205-234. https://doi.org/10.1007/s002080000083
- C. Poor and D. Yuen, The Extreme Core, Abh. Math. Sem. Univ. Hamburg 75 (2005), 51-75. https://doi.org/10.1007/BF02942035
- C. Poor and D. Yuen, The Berge-Martinet constant and slopes of Siegel cusp forms, Bull. London Math. Soc. 38 (2006), no. 6, 913-924. https://doi.org/10.1112/S0024609306019138
- C. Poor and D. Yuen, Computations of spaces of Siegel modular cusp forms, J. Math. Soc. Japan 59 (2007), no. 1, 185-222. https://doi.org/10.2969/jmsj/1180135507
-
C. Poor and D. Yuen, Dimensions of Cusp Forms for
${\Gamma}_0$ (p) in Degree Two and Small Weights, Abh. Math. Sem. Univ. Hamburg 77 (2007), 59-80. https://doi.org/10.1007/BF03173489 - C. Poor and D. Yuen, The cusp structure of the paramodular groups for degree two, J. Korean Math. Soc. 50 (2013), no. 2, 445-464. https://doi.org/10.4134/JKMS.2013.50.2.445
- C. Poor and D. Yuen, Paramodular cusp forms, Math. Comp. 84 (2015), no. 293, 1401-1438. https://doi.org/10.1090/S0025-5718-2014-02870-6
- C. Poor and D. Yuen, Paramodular newforms via Borcherds products, in preparation.
- M. Raum, Formal Fourier-Jacobi expansions and special cycles of codimension 2, arXiv:1302.0880v2 [math.NT].
- H. Reefschlager, Berechnung der Anzahl der 1-Spitzen der Paramodularen Gruppen 2-ten Grades, Dissertation, Georg-August-Universitat zu Gottingen, 1973.
- I. Satake, Compactification de espaces quotients de Siegel II, Seminaire Cartan 10 (1957/58), no. 2, 1-10.
- N.-P. Skoruppa and D. Zagier, A trace formula for Jacobi forms, J. Reine Angew. Math. 393 (1989), 168-198.
Cited by
- Non-vanishing of fundamental Fourier coefficients of paramodular forms vol.182, 2018, https://doi.org/10.1016/j.jnt.2017.07.002
- Paramodular forms of level 8 and weights 10 and 12 2018, https://doi.org/10.1142/S1793042118500288
- Weight one Jacobi forms and umbral moonshine vol.51, pp.10, 2018, https://doi.org/10.1088/1751-8121/aaa819
- Antisymmetric Paramodular Forms of Weights 2 and 3 pp.1687-0247, 2019, https://doi.org/10.1093/imrn/rnz011