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ON THE SPECTRAL GEOMETRY FOR THE JACOBI
OPERATORS OF HARMONIC MAPS INTO A
SASAKIAN OR COSYMPLETIC SPACE FORM

TAE Ho KANG AND HyunN Suk KiMm

ABSTRACT. When the target manifold is a Sasakian or cosympletic
space form, we characterize invariant immersions, tangential anti-
invariant immersions and normal anti-invariant immersions by the
spectra of the Jacobi operator.

1. Introduction

The spectral geometry for the second order operators arising in Rie-
mannian geometry has been studied by many authors. Among them, the
spectral geometry for the Jacobi operator of the energy of a harmonic
map was studied in [8,9] (for manifolds) and [6] (for Riemannian foli-
ations), and for the Jacobi operator of the functional area was studied
in [2,4,7]. The Jacobi operator of a harmonic map arises in the second
variation formula of the energy of a harmonic map. This formula can be
expressed in terms of an elliptic differential operator (called the Jacobi
operator) defined on the space of cross sections of the induced bundle of
the target manifold.

In this paper we shall study the spectral goemetry for the Jacobi
operator of a harmonic map when the target manifold is a Sasakian or
cosympletic space form.
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2. Preliminaries

Let (M, g) be an m-dimensional closed (i.e., compact without bound-
ary) Riemannian manifold with the metric g and (N, k) be an n-dimensio-
nal Riemannian manifold with the metric h. A smooth map f:(M,g)—
(N, h) is said to be harmonic if it is a critical point of the energy func-
tional E, which is defined by E(f) := Jys €(f)dvg, where the energy
density e(f) of f is defined to be e(f) := 15" h(f.e;, fre)) (f. is the
differential of f, {e; -- - e,,} alocal orthonomal frame field on M , and dv,
the volume element with respect to ¢). Let us consider the Jacobi opera-
tor Jy for a harmonic map f defined by J;V = Af‘/—“RfV for Ve I'(E)
(the space of smooth sections of the induced bundle f*TN =: E of
the tangent bundle TN ), where A is the rough Laplacian associated
to the induced connection V of E defined by VxV = V}‘* xV ( for
any tangent vector field X on M, V" the Levi-Civita connection of the
metric h ), and R,V := Z:il Ry (V, fee:) fee; ( Ry is the Riemann-
lan curvature tensor of (N, k) ). In this paper, we take the convention
RL(X,Y) = [V}, V'}f,] - VFX,Y/]’ where X, Y are tangent vector fields
on N (for details, see [9,10]). Then J; is self-adjoint, elliptic of second
order and has a discrete spectrum as a conseqence of the compactness
of M.

Consider the semigroup e~t/s given by

e IV (z) = ey IV (y)dvg (y),
!
where K (t,z,y,J;) € Hom(E,, E,) is the kernel function (z,y e M,E,
is the fibre of E over z). Then we have asymptotic expansions for the
L?-trace

(21)  Tr(e™™)=> e ™ ~ (4mt) ¥ > than(Jy) (¢4 07),
=1 n=0

where each a,(Jy) is the spectral invariant of J;, which depends only
on the discrete spectrum ;

Spec(Jr) ={ A <A <+ < N\ - 1 400}

Applying the Jacobi operator J 7 of a harmonic map f to Gilkey’s results
in [3,p.327], we obtain
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THEOREM |[cf.9]. For a harmonic map f: (M, g) — (N,h)

(2.2) ao(Jf) =n-Vol(M,g),
(2.3) a1 (Jy) = —g/M Todvg + /M Tr(Ry)dvg,
R4 @l = 555 [ 672 = 2el + 208, s,

360/[ 30||R"7|| +607,Tr(Ry)

+ 180T r(R;?)]dv,,

where RV is the curvature tensor of the connection V on E, which is
defined by RV := f*Ry,, and Ry, pg, 74 are the curvature tensor. Ricci
tensor, scalar curvature on M, respectively.

3. The calculation of spectral invariants

Let (¢,£,7m,h) be an almost contact metric structure on a smooth
manifold N. This means that

¢*=-I+£(®m,  ¢€) =nod =0,
(3.1) n(€) =1, h¢X,Y) = —h(X,¢Y),
n(X) = h(X,£),

where ¢ is a tensor field of type (1,1), £ a vector field, nal- form, I the
identity transformation, k a Riemannian metric and X, Y vector fields
on N [cf.1,5,11]. Define a 2-form & on N by &(X,Y) := h(X,¢Y) for
any vector fields X,YonN.

If N(X,Y)+2dn® ¢ =0, where N is defined by

N(X,Y):= [¢X,¢Y] + ¢°[X, Y] - ¢[X, 0Y] - ¢[¢X, Y],
then the almost contact metric structure (¢, &, n, h) is said to be normal.

If & = dn, the almost contact metric structure (¢,£,7n, k) is called a
contact metric structure.
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N = (N,¢,€&n, h) is called a Sasakian manifold if a smooth man-
ifold N admits a normal contact metric structure (0, &,mh). N =
(N, 9,€,m,h) is called a cosympletic manifold if a smooth manifold N
admits a normal almost contact metric structure (@,&,m, h) such that &
is closed and dn = 0.

From nowon N = (N, ¢, €, 7, h) will denote either a Sasakian manifold
or a cosympletic manifold unless otherwise stated.

COROLLARY 1. Let f, f’ be harmonic maps of compact Riemannian
manifold (M, g) into an n-Einstein manifold N — (N,9,&,m,h) ie., the
Ricci tensor py, of N is of the form ; Ph = AR+ un®n, where A(# 0) and
p are some constants. If Spec(Jy) = Spec(J;+) and the structure vector
field { is normal to f(M) and f'(M), then E(f) == E(f").

PROOF. From (2.3), we get
NE(f) + 1 /M |70l du, = 2XE(f') + 1 / s,

But |[f*n|* = 0 = 171> because of the normality of the structure
vector field £, which completes the proof. a

On N = (N,¢,£,1n, k) we call a sectional curvature

M(B(X, §X)oX, X)

h(X, X)h(¢X, pX)

determined by two orthogonal vectors X and $X (which are orthogonal
to &) the ¢-sectional curvature with respect to X of N. If the ¢-sectional
curvature is always constant with respect to any vector at every point of
the manifold N, then we call N’ = (N, ®,€,m, h) a manifold of constant
¢-sectional curvature k, or a Sasakian space form (a cosympletic space
form resp.) when A is a Sasakian manifold (a cosympletic manifold
resp.)

It has been shown [cf.5,11] that on A/ = (N, é,&,n,h) with constant
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¢-sectional curvature k,

hR(X,Y)Z, W) = a{h(Y, Z)h(X, W) = h(X, Z)R(Y, W)}
+ B{n(X)(2h(Y, W) + n(Y)n(W)h(X, Z)
(32) — 9(X)n(W)R(Z,Y) = n(Z)n(Y (X, W)
+®(X,Z2)(W,Y) — (X, W)P(Z,Y)
- 28(X,Y)®(Z, W)},
where a = %,[)’ = k—;—l in the Sasakian case and a = 3 = § in the

cosympletic case.

Throughout this paper, N'(k) will denote a (2n+1)-dimensional Sasak-
ian space form or cosympletic space form with constant ¢-sectional cur-
vature k unless otherwise stated. Obviously, M (k) is an n-Einstein man-
ifold.

For a harmonic map f : (M™,g) — N (k) we obtain from (3.1) and
(3.2)

m 2n+1

(3.3) Tr(Rys) = Z Z h(Rh(va, fe€i)fe€:,va)

i=1 a=1

= 4(an + Be(f) — 2B(n + 1)|| f1||?,

m  2n+1

TT(Rf2> - Z Z h(Rh(vaaf*ei)f*ei’Izh(vavf*ej)f*ej)

i,j=1 a=1
={(2n — 1)a? + 408 + B2} (trf*h)?
(3.4) + (@2 + 98| f*RI* — 6a| f* @)

m

+ (48— 166%) 3 n(f.en(foe h((Foeis foes)

i\j=1

+2(n+ 78| f*all?,
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(3.5)
- m  2n+1

IR = 3 D h(Ru(feei, fre;)va, vo)h(Bu(fuei, fre;)va, vs)
i,7=1a,b=1

'—2((12 + 52)Hf*h’“2 + 8(!/3 Z n(f*ei)n(f*ej)h(f*eia f*ej)

1,7=1
+2(a”® + B2)(trf*h)? — 8aB(tr F*h)||f*n||
+ {1208+ 88%(n + 1)} | f* 9|,

where || f*||* := E;”ln(f*ez)n(f*ei),||f*<1>||2 = YT b feei, 0fae5)?,

| F*h|? = > et h(feeis fre;)?, fe; 1 i = 1, -+ ,m} is a local or-
thonormal frame field on M, and {v, : @ = 1,--- ,2n + 1} is a local
orthonormal frame field on N (k).

Thus substituting (3.3) ~ (3.5) into (2.2) ~ (2.4), we get

‘THEOREM 2. For a harmonic map f : (M,g) — N(k) of an m-
dimensional compact Riemannian manifold (M, g) into a (2n+1)-dimens-
ional Sasakian or cosympletic space form N'(k). Then the coefficients
ao(Jy), a1(Jy) and az(Jys) of the asymptotic expansion for the Jacobi
operator Jy are respectively given by

(3.6) ao(Js) = 2n+ V)Vol(M, g).
(2n +1) . 112
ai(Jp) = —— Tgdvg — 206(n + 1) £ nll" dvy
- i), I
+ 4(an + B)E(f),
(3.8)
2n+1

az(Jy) = 360 M[57'92 - 2”,09”2 + 2“R9“2]dvg

+ 15 [ 86+ TR - 52008 +36) S n(facan(fuc)x
7:1

h(frei, fre;) +16{(3n — 2)a® + 6a8 + B2}e(f)? + 16a8| f 1| %e(f)
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— 8{608 + 52(n + DHIF @ + 12(n + )5 1] *|dv,

2 1
+ 3 /M(an -+ ﬁ)Tge(f)dvg 3 [M ﬂ(n + ])||f*n”27-gdvg.

4. Isometric minimal immersions

Let N = (N, ¢,{,n,h) be a (2n + 1)-dimensional Sasakian or cosym-
pletic manifold and f : (M,g) — N be an isometric immersion of
a Riemannian manifold (M,g) into N. f is called an invariant im-
mersion if ¢(fuTM) C f.TM and ¢ is tangent to f(M) everywhere
on M. If f is an invariant immersion, then the immersion f is min-
imal([cf.11]). f is called an tangential(normal resp.)anti-invariant im-
mersion if ¢(f.TM)Lf.TM and ¢ is tangent(normal resp.)}to f(M) ev-
erywhere on M. It was known in a Sasakian manifold N' = (N, ¢, £, 1, h)
([cf.11]) that if the structure vector field £ is normal to f(M) (i.e., fisa
C-totally real immersion), then the immersion f is normal anti-invariant.

PROPOSITION 3. Let f and f' be isometric minimal immersions of
compact Riemannian manifolds (M, g) and (M’,q") into an n-Einstein
manifold, respectively. Assume that Spec(Jy) := Spec(Js) and the
structure vector field £ is normal (or tangent) to f(M) and f'(M').
Then we have

(i) dim(M) = dim(M’),
(it) Vol(M,g) = Vol(M', ¢"),
(iit) [oy mgdvy = [y, Ty dvg.

PROOF. (i) follows from the asymptotic expansion (2.1), (i) ~ (iii
from (2.2), (2.3) and Corollary 1. O

—

The following Propositions 4 and 5 are due to the structure equation
of Gauss and (iii) of Proposition 3.

ProproSITION 4. Let f, f' be invariant immersions of compact Rie-
mannian manifolds (M, g) and (M’,¢’) into a Sasakian or cosympletic
space form N (k) respectively. Assume that Spec(.J) = Spec(J;). If f
is a totally geodesic immersion, then so is f’.
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ProposITION 5. Let f, f’ be tangential or normal anti-invariant,
minimal immersions of compact Riemannian manifolds (M, g), (M', ¢')
into a Sasakian or cosympletic space form N(k) respectively. Assume
that Spec(Jy) = Spec(Js). If f is a totally geodesic immersion, then so
is f'.

LEMMA 6. Let f, f' be isometric minimal immersions of compact
Riemannian manifolds (M, g) into a Sasakian or cosympletic space form
N (k) (k # 1 for the Sasakian case). Assume that Spec(J;) = Spec(J;).
Then € is tangent(normal resp.) to f(M) if and only if ¢ is tangent (norm-
al resp.) to f'(M).

1

PROOF. Since f and f’ are isometric immersions, e(f) = 3dim(M) =
e(f'). It is clear from (3.6) and (3.7) that [, |ff*7;!§2dvg = [ Hf’*n[l?dvg.
From which, the tangency and normality of £ are respectively preserved.

0

THEOREM 7. Let f, f' be isometric minimal immersions of a compact
Riemannian manifold (M, g) into a Sasakian or cosympletic space form
N (k) with constant ¢-sectional curvature k (k # 1 for the Sasakian
case). Assume that Spec(Js) = Spec(Js). Then

(@) if f is an invariant immersion, then so is f’,
(b) if f is a tangential anti-invariant immersion, then so is f,

c) if f is a normal anti-invariant immersion, then so is f’.

PRrOOF. To begin with we prove (a) and (b). Since f, f’ are isometric
immersions, we have

e(f) = e(f") = gdim(M), R = 1 = dim(a),

Moreover
m

Z n(f*ei)n(f*ej)h(f*eiaf*ej) = ||f*77H2 =1

i,7=1
=1 l” = 3" n(fleon(fle)h(fiei. fle;)

ig=1
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because of Lemma 6, where {e; : ¢ = 1,--- ,m} is a local orthonormal
frame field on M. Thus (3.8) implies that
* * |12
(4.1) [ g eltan, = [ e,
M M

On the the other hand,

m

1£®1* = D" h(pfues, fuej)h(dfes, fues)
i,j=1

m

(4.2) = > h(P¢f.ei, fre;)h(Pof.es, fue;)

ij=1

= h(P¢f.ei, Pofeei),

m
==

3|

where P is the orthogonal projection of Ty ;)M onto f,T> M with respect
to the metric A. Hence we obtain the inequality

m

(4.3) 0 < [If*®° <Y h(¢fiei, frei) =m — 1,

=1

if £ is tangent to f(M).
Under the assumption that £ is tangent to f(M), the following state-
ments hold ;

(1) o(fuTM) C f.TM iff 15| dv, = (m — 1)Vol(M, g),
M

(i) o(f.TM) L f,TM iff / /@[] dv, = 0.
M

Then (a) follows from (i) and (4.1) ~ (4.3), and (b) from (ii) and
(4.1). Finally (c) follows from Lemma 6 and (4.1), since (4.1) still holds.
Hence we complete the proof. O
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