A Note on Maass-Jacobi Forms

Jae-Hyun Yang
Department of Mathematics, Inha University, Incheon 402-751, Korea
e-mail: jhyang@inha.ac.kr

Abstract. In this paper, we introduce the notion of Maass-Jacobi forms and investigate some properties of these new automorphic forms. We also characterize these automorphic forms in several ways.

1. Introduction

We let $S L_{2,1}(\mathbb{R})=S L(2, \mathbb{R}) \ltimes \mathbb{R}^{(1,2)}$ be the semi-direct product of the special linear group $S L(2, \mathbb{R})$ of degree 2 and the commutative group $\mathbb{R}^{(1,2)}$ equipped with the following multiplication law

$$
\begin{equation*}
(g, \alpha) *(h, \beta)=\left(g h, \alpha^{t} h^{-1}+\beta\right), \quad g, h \in S L(2, \mathbb{R}), \quad \alpha, \beta \in \mathbb{R}^{(1,2)} \tag{1.1}
\end{equation*}
$$

where $\mathbb{R}^{(1,2)}$ denotes the set of all 1×2 real matrices. We let

$$
S L_{2,1}(\mathbb{Z})=S L(2, \mathbb{Z}) \ltimes \mathbb{Z}^{(1,2)}
$$

be the discrete subgroup of $S L_{2,1}(\mathbb{R})$ and $K=S O(2)$ the special orthogonal group of degree 2 .

Throughout this paper, for brevity we put

$$
G=S L_{2,1}(\mathbb{R}), \quad \Gamma_{1}=S L(2, \mathbb{Z}) \quad \text { and } \quad \Gamma=S L_{2,1}(\mathbb{Z})
$$

Let \mathbb{H} be the Poincaré upper half plane. Then G acts on $\mathbb{H} \times \mathbb{C}$ transitively by

$$
\begin{equation*}
(g, \alpha) \circ(\tau, z)=\left((d \tau-c)(-b \tau+a)^{-1},\left(z+\alpha_{1} \tau+\alpha_{2}\right)(-b \tau+a)^{-1}\right) \tag{1.2}
\end{equation*}
$$

where $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbb{R}), \alpha=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{R}^{(1,2)}$ and $(\tau, z) \in \mathbb{H} \times \mathbb{C}$. We observe that K is the stabilizer of this action (1.2) at the origin $(i, 0) . \mathbb{H} \times \mathbb{C}$ may be identified with the homogeneous space G / K in a natural way.

Received October 21, 2002.
2000 Mathematics Subject Classification: Primary 11F55, 32M10, 32N10, 43A85.
Key words and phrases: Maass forms, invariant differential operators, automorphic forms.

This work was supported by Korea Research Foundation Grant(KRF-2000-041-D00005).

The aim of this paper is to define the notion of Maass-Jacobi forms generalizing that of Maass wave forms and study some properties of these new automorphic forms. For the convenience of the reader, we review Maass wave forms. For $s \in$ \mathbb{C}, we denote by $W_{s}\left(\Gamma_{1}\right)$ the vector space of all smooth bounded functions f : $S L(2, \mathbb{R}) \longrightarrow \mathbb{C}$ satisfying the following conditions (a) and (b) :
(a) $f(\gamma g k)=f(g)$ for all $\gamma \in \Gamma_{1}, g \in S L(2, \mathbb{R})$ and $k \in K$.
(b) $\Delta_{0} f=\frac{1-s^{2}}{4} f$,
where $\Delta_{0}=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)-y \frac{\partial^{2}}{\partial x \partial \theta}+\frac{5}{4} \frac{\partial^{2}}{\partial \theta^{2}}$ is the Laplace-Beltrami operator associated to the $S L(2, \mathbb{R})$-invariant Riemannian metric

$$
d s_{0}^{2}=\frac{1}{y^{2}}\left(d x^{2}+d y^{2}\right)+\left(d \theta+\frac{d x}{2 y}\right)^{2}
$$

on $S L(2, \mathbb{R})$ whose coordinates $x, y, \theta(x \in \mathbb{R}, y>0,0 \leq \theta<2 \pi)$ are given by

$$
g=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
y^{1 / 2} & 0 \\
0 & y^{-1 / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right), \quad g \in S L(2, \mathbb{R})
$$

by means of the Iwasawa decomposition of $S L(2, \mathbb{R})$. The elements in $W_{s}\left(\Gamma_{1}\right)$ are called Maass wave forms. It is well known that $W_{s}\left(\Gamma_{1}\right)$ is nontrivial for infinitely many values of s. For more detail, we refer to [6], [9], [13], [17] and [20].

The paper is organized as follows. In Section 2, we calculate the algebra of all invariant differential operators under the action (1.2) of G on $\mathbb{H} \times \mathbb{C}$ completely. In addition, we provide a G-invariant Riemannian metric on $\mathbb{H} \times \mathbb{C}$ and compute its Laplace-Beltrami operator. In Section 3, using the above Laplace-Beltrami operator, we introduce a concept of Maass-Jacobi forms generalizing that of Maass wave forms. We characterize Maass-Jacobi forms as smooth functions on G or $S \mathcal{P}_{2} \times \mathbb{R}^{(1,2)}$ satisfying a certain invariance property, where $S \mathcal{P}_{2}$ denotes the symmetric space consisting of all 2×2 positive symmetric real matrices Y with det $Y=1$. In Section 4 , we find the unitary dual of G and present some properties of G. In Section 5, we describe the decomposition of the Hilbert space $L^{2}(\Gamma \backslash G)$. In the final section, we make some comments on the Fourier expansion of Maass-Jacobi forms.

Notations. We denote by \mathbb{Z}, \mathbb{R} and \mathbb{C} the ring of integers, the field of real numbers and the field of complex numbers respectively. \mathbb{Z}^{+}denotes the set of all positive integers. $F^{(k, l)}$ denotes the set of all $k \times l$ matrices with entries in a commutative ring F. For a square matrix $A, \sigma(A)$ denotes the trace of A. For any $M \in F^{(k, l)},{ }^{t} M$ denotes the transpose of M. For $A \in F^{(k, l)}$ and $B \in F^{(k, k)}$, we set $B[A]={ }^{t} A B A$. We denote the identity matrix of degree n by E_{n}. \mathbb{H} denotes the Poincaré upperhalf plane.
2. Invariant Differential Operators on $\mathbb{H} \times \mathbb{C}$

We recall that $S \mathcal{P}_{2}$ is the symmetric space consisting of all 2×2 positive symmetric real matrices Y with det $Y=1$. Then G acts on $S \mathcal{P}_{n} \times \mathbb{R}^{(m, n)}$ transitively by

$$
\begin{equation*}
(g, \alpha) \cdot(Y, V)=\left(g Y^{t} g,(V+\alpha)^{t} g\right) \tag{2.1}
\end{equation*}
$$

where $g \in S L(2, \mathbb{R}), \alpha \in \mathbb{R}^{(1,2)}, Y \in S \mathcal{P}_{2}$ and $V \in \mathbb{R}^{(1,2)}$. It is easy to see that K is a maximal compact subgroup of G stabilizing the origin $\left(E_{2}, 0\right)$. Thus $S \mathcal{P}_{n} \times \mathbb{R}^{(m, n)}$ may be identified with the homogeneous space G / K as follows :

$$
\begin{equation*}
G / K \ni(g, \alpha) K \longmapsto(g, \alpha) \cdot\left(E_{2}, 0\right) \in S \mathcal{P}_{n} \times \mathbb{R}^{(m, n)}, \tag{2.2}
\end{equation*}
$$

where $g \in S L(2, \mathbb{R})$ and $\alpha \in \mathbb{R}^{(1,2)}$.
We know that $S L(2, \mathbb{R})$ acts on \mathbb{H} transitively by

$$
g<\tau>=(a \tau+b)(c \tau+d)^{-1}, \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{R}), \quad \tau \in \mathbb{H} .
$$

Now we observe that the action (1.2) of G on $\mathbb{H} \times \mathbb{C}$ may be rewritten as

$$
(g, \alpha) \circ(\tau, z)=\left({ }^{t} g^{-1}<\tau>,\left(z+\alpha_{1} \tau+\alpha_{2}\right)(-b \tau+a)^{-1}\right)
$$

where $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbb{R}), \alpha=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{R}^{(1,2)}$, and $(\tau, z) \in \mathbb{H} \times \mathbb{C}$. Since the action (1.2) is transitive and K is the stabilizer of this action at the origin $(i, 0), \mathbb{H} \times \mathbb{C}$ can be identified with the homogeneous space G / K as follows:

$$
\begin{equation*}
G / K \ni(g, \alpha) K \longmapsto(g, \alpha) \circ(i, 0) . \tag{2.3}
\end{equation*}
$$

We see that we can express an element Y of $S \mathcal{P}_{2}$ uniquely as

$$
Y=\left(\begin{array}{cc}
y^{-1} & 0 \tag{2.4}\\
0 & y
\end{array}\right)\left[\left(\begin{array}{cc}
1 & -x \\
0 & 1
\end{array}\right)\right]=\left(\begin{array}{cc}
y^{-1} & -x y^{-1} \\
-x y^{-1} & x^{2} y^{-1}+y
\end{array}\right)
$$

with $x, y \in \mathbb{R}$ and $y>0$.
Lemma 2.1. We define the mapping $T: S \mathcal{P}_{n} \times \mathbb{R}^{(m, n)} \longrightarrow \mathbb{H} \times \mathbb{C}$ by

$$
\begin{equation*}
T(Y, V)=\left(x+i y, v_{1}(x+i y)+v_{2}\right) \tag{2.5}
\end{equation*}
$$

where Y is of the form (2.4) and $V=\left(v_{1}, v_{2}\right) \in \mathbb{R}^{(1,2)}$. Then the mapping T is a bijection which is compatible with the above two actions (1.2) and (2.1).

For any $Y \in S \mathcal{P}_{2}$ of the form (2.4), we put

$$
g_{Y}=\left(\begin{array}{cc}
1 & 0 \tag{2.6}\\
-x & 1
\end{array}\right)\left(\begin{array}{cc}
y^{-1 / 2} & 0 \\
0 & y^{1 / 2}
\end{array}\right)=\left(\begin{array}{cc}
y^{-1 / 2} & 0 \\
-x y^{-1 / 2} & y^{1 / 2}
\end{array}\right) .
$$

and

$$
\begin{equation*}
\alpha_{Y, V}=V^{t} g_{Y}^{-1} \tag{2.7}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
T(Y, V)=\left(g_{Y}, \alpha_{Y, V}\right) \circ(i, 0) \tag{2.8}
\end{equation*}
$$

Proof. It is easy to prove the lemma. So we leave the proof to the reader.
Now we give a complete description of the algebra $\mathbb{D}(\mathbb{H} \times \mathbb{C})$ of all differential operators on $\mathbb{H} \times \mathbb{C}$ invariant under the action (1.2) of G. First we note that the Lie algebra \mathfrak{g} of G is given by $\mathfrak{g}=\left\{(X, Z) \mid X \in \mathbb{R}^{(2,2)}, \sigma(X)=0, Z \in \mathbb{R}^{(1,2)}\right\}$ equipped with the following Lie bracket

$$
\left[\left(X_{1}, Z_{1}\right),\left(X_{2}, Z_{2}\right)\right]=\left(\left[X_{1}, X_{2}\right]_{0}, Z_{2}^{t} X_{1}-Z_{1}^{t} X_{2}\right),
$$

where $\left[X_{1}, X_{2}\right]_{0}=X_{1} X_{2}-X_{2} X_{1}$ denotes the usual matrix bracket and (X_{1}, Z_{1}), (X_{2}, $\left.Z_{2}\right) \in \mathfrak{g}$. And \mathfrak{g} has the following decomposition

$$
\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p} \quad(\text { direct sum }),
$$

where $\mathfrak{k}=\left\{(X, 0) \in \mathfrak{g} \left\lvert\, X=\left(\begin{array}{cc}0 & x \\ -x & 0\end{array}\right)\right., \quad x \in \mathbb{R}\right\}$ and $\mathfrak{p}=\{(X, Z) \in \mathfrak{g} \mid X=$ $\left.{ }^{t} X \in \mathbb{R}^{(2,2)}, \sigma(X)=0, Z \in \mathbb{R}^{(1,2)}\right\}$.
We observe that \mathfrak{k} is the Lie algebra of K and that we have the following relations

$$
[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k} \quad \text { and } \quad[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p} .
$$

Thus the coset space $G / K \cong \mathbb{H} \times \mathbb{C}$ is a reductive homogeneous space in the sense of [12], p. 284. It is easy to see that the adjoint action Ad of K on \mathfrak{p} is given by

$$
\begin{equation*}
\operatorname{Ad}(k)((X, Z))=\left(k X^{t} k, Z^{t} k\right) \tag{2.9}
\end{equation*}
$$

where $k \in K$ and $(X, Z) \in \mathfrak{p}$ with $X={ }^{t} X, \sigma(X)=0$. The action (2.9) extends uniquely to the action ρ of K on the polynomial algebra $\operatorname{Pol}(\mathfrak{p})$ of \mathfrak{p} given by

$$
\begin{equation*}
\rho: K \longrightarrow \operatorname{Aut}(\operatorname{Pol}(\mathfrak{p})) \tag{2.10}
\end{equation*}
$$

Let $\operatorname{Pol}(\mathfrak{p})^{K}$ be the subalgebra of $\operatorname{Pol}(\mathfrak{p})$ consisting of all invariants of the action ρ of K. Then according to [12], Theorem 4.9, p. 287, there exists a canonical linear bijection $\lambda\left(P \longmapsto D_{\lambda(P)}\right)$ of $\operatorname{Pol}(\mathfrak{p})^{K}$ onto $\mathbb{D}(\mathbb{H} \times \mathbb{C})$. Indeed, if $\left(\xi_{k}\right)(1 \leq k \leq 4)$ is any basis of \mathfrak{p} and $P \in \operatorname{Pol}(\mathfrak{p})^{K}$, then

$$
\begin{equation*}
\left(D_{\lambda(P)} f\right)(\tilde{g} \circ(i, 0))=\left[P\left(\frac{\partial}{\partial t_{k}}\right) f\left(\left(\tilde{g} * \exp \left(\sum_{k=1}^{4} t_{k} \xi_{k}\right)\right) \circ(i, 0)\right)\right]_{\left(t_{k}\right)=0} \tag{2.11}
\end{equation*}
$$

where $\tilde{g} \in G$ and $f \in C^{\infty}(\mathbb{H} \times \mathbb{C})$.
We put

$$
e_{1}=\left(\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),(0,0)\right), \quad e_{2}=\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),(0,0)\right)
$$

and

$$
f_{1}=\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),(1,0)\right), \quad f_{2}=\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),(0,1)\right)
$$

Then $e_{1}, e_{2}, f_{1}, f_{2}$ form a basis of \mathfrak{p}. We write for coordinates (X, Z) by

$$
X=\left(\begin{array}{cc}
x & y \\
y & -x
\end{array}\right) \quad \text { and } \quad Z=\left(z_{1}, z_{2}\right)
$$

with real variables x, y, z_{1} and z_{2}.
Lemma 2.2. The following polynomials

$$
\begin{aligned}
P(X, Z) & =\frac{1}{8} \sigma\left(X^{2}\right)=\frac{1}{4}\left(x^{2}+y^{2}\right) \\
\xi(X, Z) & =Z^{t} Z=z_{1}^{2}+z_{2}^{2} \\
P_{1}(X, Z) & =-\frac{1}{2} Z X^{t} Z=\frac{1}{2}\left(z_{2}^{2}-z_{1}^{2}\right) x-z_{1} z_{2} y \quad \text { and } \\
P_{2}(X, Z) & =\frac{1}{2}\left(z_{2}^{2}-z_{1}^{2}\right) y+z_{1} z_{2} x
\end{aligned}
$$

are algebraically independent generators of $\operatorname{Pol}(\mathfrak{p})^{K}$.
Proof. We leave the proof of the above lemma to the reader.
Now we are ready to compute the G-invariant differential operators D, Ψ, D_{1} and D_{2} corresponding to the K-invariants P, ξ, P_{1} and P_{2} respectively under the canonical linear bijection (2.11). For real variables $t=\left(t_{1}, t_{2}\right)$ and $s=\left(s_{1}, s_{2}\right)$, we have
$\exp \left(t_{1} e_{1}+t_{2} e_{2}+s_{1} f_{1}+s_{2} f_{2}\right)=\left(\begin{array}{cc}a_{1}(t, s) & a_{3}(t, s) \\ a_{3}(t, s) a_{2}(t, s) & \end{array}\right),\left(b_{1}(t, s), b_{2}(t, s)\right)$,
where
$a_{1}(t, s)=1+t_{1}+\frac{1}{2!}\left(t_{1}^{2}+t_{2}^{2}\right)+\frac{1}{3!} t_{1}\left(t_{1}^{2}+t_{2}^{2}\right)+\frac{1}{4!}\left(t_{1}^{2}+t_{2}^{2}\right)^{2}+\cdots$
$a_{2}(t, s)=1-t_{1}+\frac{1}{2!}\left(t_{1}^{2}+t_{2}^{2}\right)-\frac{1}{3!} t_{1}\left(t_{1}^{2}+t_{2}^{2}\right)+\frac{1}{4!}\left(t_{1}^{2}+t_{2}^{2}\right)^{2}-\cdots$,
$a_{3}(t, s)=t_{2}+\frac{1}{3!} t_{2}\left(t_{1}^{2}+t_{2}^{2}\right)+\frac{1}{5!} t_{2}\left(t_{1}^{2}+t_{2}^{2}\right)^{2}+\cdots$,
$b_{1}(t, s)=s_{1}-\frac{1}{2!}\left(s_{1} t_{1}+s_{2} t_{2}\right)+\frac{1}{3!} s_{1}\left(t_{1}^{2}+t_{2}^{2}\right)-\frac{1}{4!}\left(s_{1} t_{1}+s_{2} t_{2}\right)\left(t_{1}^{2}+t_{2}^{2}\right)+\cdots$,
$b_{2}(t, s)=s_{2}-\frac{1}{2!}\left(s_{1} t_{2}-s_{2} t_{1}\right)+\frac{1}{3!} s_{2}\left(t_{1}^{2}+t_{2}^{2}\right)-\frac{1}{4!}\left(s_{1} t_{2}-s_{2} t_{1}\right)\left(t_{1}^{2}+t_{2}^{2}\right)+\cdots$.

For brevity, we write a_{j}, b_{k} for $a_{j}(t, s), b_{k}(t, s)(j=1,2,3, k=1,2)$ respectively. We now fix an element $(g, \alpha) \in G$ and write

$$
g=\left(\begin{array}{cc}
g_{1} & g_{12} \\
g_{21} & g_{2}
\end{array}\right) \in S L(2, \mathbb{R}) \quad \text { and } \quad \alpha=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{R}^{(1,2)}
$$

We put $(\tau(t, s), z(t, s))=\left((g, \alpha) * \exp \left(t_{1} e_{1}+t_{2} e_{2}+s_{1} f_{1}+s_{2} f_{2}\right)\right) \circ(i, 0)$ with $\tau(t, s)=x(t, s)+i y(t, s) \quad$ and $\quad z(t, s)=u(t, s)+i v(t, s)$.
Here $x(t, s), y(t, s), u(t, s)$ and $v(t, s)$ are real. By an easy calculation, we obtain

$$
\begin{aligned}
& x(t, s)=-(\tilde{a} \tilde{c}+\tilde{b} \tilde{d})\left(\tilde{a}^{2}+\tilde{b}^{2}\right)^{-1}, \\
& y(t, s)=\left(\tilde{a}^{2}+\tilde{b}^{2}\right)^{-1}, \\
& u(t, s)=\left(\tilde{a} \tilde{\alpha}_{2}-\tilde{b} \tilde{\alpha}_{1}\right)\left(\tilde{a}^{2}+\tilde{b}^{2}\right)^{-1}, \\
& v(t, s)=\left(\tilde{a} \tilde{\alpha}_{1}+\tilde{b} \tilde{\alpha}_{2}\right)\left(\tilde{a}^{2}+\tilde{b}^{2}\right)^{-1},
\end{aligned}
$$

where $\tilde{a}=g_{1} a_{1}+g_{12} a_{3}, \quad \tilde{b}=g_{1} a_{3}+g_{12} a_{2}, \tilde{c}=g_{21} a_{1}+g_{2} a_{3}, \quad \tilde{d}=g_{21} a_{3}+g_{2} a_{2}$, $\tilde{\alpha}_{1}=\alpha_{1} a_{2}-\alpha_{2} a_{3}+b_{1}, \tilde{\alpha}_{2}=-\alpha_{1} a_{3}+\alpha_{2} a_{1}+b_{2}$.
By an easy calculation, at $t=s=0$, we have

$$
\begin{aligned}
& \frac{\partial x}{\partial t_{1}}=4 g_{1} g_{12}\left(g_{1}^{2}+g_{12}^{2}\right)^{-2} \\
& \frac{\partial y}{\partial t_{1}}=-2\left(g_{1}^{2}-g_{12}^{2}\right)\left(g_{1}^{2}+g_{12}^{2}\right)^{-2} \\
& \frac{\partial u}{\partial t_{1}}=4 g_{1} g_{12}\left(g_{1} \alpha_{1}+g_{12} \alpha_{2}\right)\left(g_{1}^{2}+g_{12}^{2}\right)^{-2}, \\
& \frac{\partial v}{\partial t_{1}}=-2\left(g_{1} \alpha_{1}+g_{12} \alpha_{2}\right)\left(g_{1}^{2}-g_{12}^{2}\right)\left(g_{1}^{2}+g_{12}^{2}\right)^{2}, \\
& \frac{\partial^{2} x}{\partial t_{1}^{2}}=-16 g_{1} g_{12}\left(g_{1}^{2}-g_{12}^{2}\right)\left(g_{1}^{2}+g_{12}^{2}\right)^{-3}, \\
& \frac{\partial^{2} y}{\partial t_{1}^{2}}=8\left(g_{1}^{2}-g_{12}^{2}\right)^{2}\left(g_{1}^{2}+g_{12}^{2}\right)^{-3}-4\left(g_{1}^{2}+g_{12}^{2}\right)^{-1}, \\
& \frac{\partial^{2} u}{\partial t_{1}^{2}}=-16 g_{1} g_{12}\left(g_{1} \alpha_{1}+g_{12} \alpha_{2}\right)\left(g_{1}^{2}-g_{12}^{2}\right)\left(g_{1}^{2}+g_{12}^{2}\right)^{-3}, \\
& \frac{\partial^{2} v}{\partial t_{1}^{2}}=4\left(g_{1} \alpha_{1}+g_{12} \alpha_{2}\right)\left(g_{1}^{4}+g_{12}^{4}-6 g_{1}^{2} g_{12}^{2}\right)\left(g_{1}^{2}+g_{12}^{2}\right)^{-3}
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\partial x}{\partial t_{2}}=-2\left(g_{1}^{2}-g_{12}^{2}\right)\left(g_{1}^{2}+g_{12}^{2}\right)^{-2} \\
& \frac{\partial y}{\partial t_{2}}=-4 g_{1} g_{12}\left(g_{1}^{2}+g_{12}^{2}\right)^{-2} \\
& \frac{\partial u}{\partial t_{2}}=-2\left(g_{1} \alpha_{1}+g_{12} \alpha_{2}\right)\left(g_{1}^{2}-g_{12}^{2}\right)\left(g_{1}^{2}+g_{12}^{2}\right)^{-2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial v}{\partial t_{2}}=-4 g_{1} g_{12}\left(g_{1} \alpha_{1}+g_{12} \alpha_{2}\right)\left(g_{1}^{2}+g_{12}^{2}\right)^{-2}, \\
& \frac{\partial^{2} x}{\partial t_{2}^{2}}=16 g_{1} g_{12}\left(g_{1}^{2}-g_{12}^{2}\right)\left(g_{1}^{2}+g_{12}^{2}\right)^{-3}, \\
& \frac{\partial^{2} y}{\partial t_{2}^{2}}=32 g_{1}^{2} g_{12}^{2}\left(g_{1}^{2}+g_{12}^{2}\right)^{-3}-4\left(g_{1}^{2}+g_{12}^{2}\right)^{-1}, \\
& \frac{\partial^{2} u}{\partial t_{2}^{2}}=16 g_{1} g_{12}\left(g_{1} \alpha_{1}+g_{12} \alpha_{2}\right)\left(g_{1}^{2}-g_{12}^{2}\right)\left(g_{1}^{2}+g_{12}^{2}\right)^{-3}, \\
& \frac{\partial^{2} v}{\partial t_{2}^{2}}=-4\left(g_{1} \alpha_{1}+g_{12} \alpha_{2}\right)\left(g_{1}^{4}+g_{2}^{4}-6 g_{1} g_{12}^{2}\right)\left(g_{1}^{2}+g_{12}^{2}\right)^{-3} .
\end{aligned}
$$

We note that $\tilde{a} \tilde{d}-\tilde{b} \tilde{c}=1, \quad a_{1} a_{2}-a_{3}^{2}=1$ and $g_{1} g_{2}-g_{12} g_{21}=1$.
Using the above facts and applying the chain rule, we can easily compute the differential operators D, Ψ, D_{1} and D_{2}. It is known that the images of generators P, ξ, P_{1} and P_{2} under λ are generators of $\mathbb{D}(\mathbb{H} \times \mathbb{C})($ cf. [11] $)$.

Summarizing, we have the following.
Theorem 2.3. The algebra $\mathbb{D}(\mathbb{H} \times \mathbb{C})$ is generated by the following differential operators

$$
\begin{equation*}
D=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+v^{2}\left(\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}\right)+2 y v\left(\frac{\partial^{2}}{\partial x \partial u}+\frac{\partial^{2}}{\partial y \partial v}\right) \tag{2.12}
\end{equation*}
$$

$$
\begin{equation*}
\Psi=y\left(\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}\right) \tag{2.13}
\end{equation*}
$$

$$
\begin{equation*}
D_{1}=2 y^{2} \frac{\partial^{3}}{\partial x \partial u \partial v}-y^{2} \frac{\partial}{\partial y}\left(\frac{\partial^{2}}{\partial u^{2}}-\frac{\partial^{2}}{\partial v^{2}}\right)+\left(v \frac{\partial}{\partial v}+1\right) \Psi \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{2}=y^{2} \frac{\partial}{\partial x}\left(\frac{\partial^{2}}{\partial v^{2}}-\frac{\partial^{2}}{\partial u^{2}}\right)-2 y^{2} \frac{\partial^{3}}{\partial y \partial u \partial v}-v \frac{\partial}{\partial u} \Psi \tag{2.15}
\end{equation*}
$$

where $\tau=x+i y$ and $z=u+i v$ with real variables x, y, u, v. Moreover, we have

$$
\begin{aligned}
{[D, \Psi]=D \Psi-\Psi D=} & 2 y^{2} \frac{\partial}{\partial y}\left(\frac{\partial^{2}}{\partial u^{2}}-\frac{\partial^{2}}{\partial v^{2}}\right)-4 y^{2} \frac{\partial^{3}}{\partial x \partial u \partial v} \\
& -2\left(v \frac{\partial}{\partial v} \Psi+\Psi\right)
\end{aligned}
$$

In particular, the algebra $\mathbb{D}(\mathbb{H} \times \mathbb{C})$ is not commutative. Thus the homogeneous space $\mathbb{H} \times \mathbb{C}$ is not weakly symmetric in the sense of A. Selberg ([19]).

Now we provide a natural G-invariant Kähler metric on $\mathbb{H} \times \mathbb{C}$.
Proposition 2.4. The Riemannian metric ds ${ }^{2}$ on $\mathbb{H} \times \mathbb{C}$ defined by

$$
d s^{2}=\frac{y+v^{2}}{y^{3}}\left(d x^{2}+d y^{2}\right)+\frac{1}{y}\left(d u^{2}+d v^{2}\right)-\frac{2 v}{y^{2}}(d x d u+d y d v)
$$

is invariant under the action (1.2) of G and is a Kähler metric on $\mathbb{H} \times \mathbb{C}$. The Laplace-Beltrami operator Δ of the Riemannian space $\left(\mathbb{H} \times \mathbb{C}, d s^{2}\right)$ is given by

$$
\Delta=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+\left(y+v^{2}\right)\left(\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}\right)+2 y v\left(\frac{\partial^{2}}{\partial x \partial u}+\frac{\partial^{2}}{\partial y \partial v}\right)
$$

That is, $\Delta=D+\Psi$.
Proof. For $Y \in S \mathcal{P}_{2}$ of the form (2.4) and $\left(v_{1}, v_{2}\right) \in \mathbb{R}^{(1,2)}$, it is easy to see that

$$
d Y=\left(\begin{array}{cc}
-y^{-2} d y & -y^{-1} d x+x y^{-2} d y \\
-y^{-1} d x+x y^{-2} d y & 2 x y^{-1} d x+\left(1-x^{2} y^{-2}\right) d y
\end{array}\right)
$$

and $d V=\left(d v_{1}, d v_{2}\right)$. Then we can show that the following metric $d \tilde{s}^{2}$ on $S \mathcal{P}_{n} \times$ $\mathbb{R}^{(m, n)}$ defined by

$$
d \tilde{s}^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}+\frac{1}{y}\left\{\left(x^{2}+y^{2}\right) d v_{1}^{2}+2 x d v_{1} d v_{2}+d v_{2}^{2}\right\}
$$

is invariant under the action (2.1) of G. Indeed, since

$$
Y^{-1}=\left(\begin{array}{cc}
y+x^{2} y^{-1} & x y^{-1} \\
x y^{-1} & y^{-1}
\end{array}\right)
$$

we can easily show that $d \tilde{s}^{2}=\frac{1}{2} \sigma\left(Y^{-1} d Y Y^{-1} d Y\right)+d V Y^{-1 t}(d V)$.
For an element $(g, \alpha) \in G$ with $g \in S L(2, \mathbb{R})$ and $\alpha \in \mathbb{R}^{(1,2)}$, we put

$$
\left(Y^{*}, V^{*}\right)=(g, \alpha) \cdot(Y, V)=\left(g Y^{t} g,(V+\alpha)^{t} g\right)
$$

Since $Y^{*}=g Y^{t} g$ and $V^{*}=(V+\alpha)^{t} g$, we get $d Y^{*}=g d Y^{t} g$ and $V^{*}=$ $(V+\alpha)^{t} g$.
Therefore by a simple calculation, we can show that

$$
\begin{aligned}
& \sigma\left(Y^{*-1} d Y^{*} Y^{*-1} d Y^{*}\right)+d V^{*} Y^{*-1 t}\left(d V^{*}\right) \\
& =\sigma\left(Y^{-1} d Y Y^{-1} d Y\right)+d V Y^{-1 t}(d V)
\end{aligned}
$$

Hence the metric $d \tilde{s}^{2}$ is invariant under the action (2.1) of G.

Using this fact and Lemma 2.1, we can prove that the metric $d s^{2}$ in the above theorem is invariant under the action (1.2). Since the matrix form $\left(g_{i j}\right)$ of the metric $d s^{2}$ is given by

$$
\left(g_{i j}\right)=\left(\begin{array}{cccc}
\left(y+v^{2}\right) y^{-3} & 0 & -v y^{-2} & 0 \\
0 & \left(y+v^{2}\right) y^{-3} & 0 & -v y^{-2} \\
-v y^{-2} & 0 & y^{-1} & 0 \\
0 & -v y^{-2} & 0 & y^{-1}
\end{array}\right)
$$

and $\operatorname{det}\left(g_{i j}\right)=y^{-6}$, the inverse matrix $\left(g^{i j}\right)$ of $\left(g_{i j}\right)$ is easily obtained by

$$
\left(g^{i j}\right)=\left(\begin{array}{cccc}
y^{2} & 0 & y v & 0 \\
0 & y^{2} & 0 & y v \\
y v & 0 & y+v^{2} & 0 \\
0 & y v & 0 & y+v^{2}
\end{array}\right)
$$

Now it is easily shown that $D+\Psi$ is the Laplace-Beltrami operator of $\left(\mathbb{H} \times \mathbb{C}, d s^{2}\right)$.

Remark 2.5. We can show that for any two positive real numbers α and β, the following metric
$d s_{\alpha, \beta}^{2}=\alpha \frac{d x^{2}+d y^{2}}{y^{2}}+\beta \frac{v^{2}\left(d x^{2}+d y^{2}\right)+y^{2}\left(d u^{2}+d v^{2}\right)-2 y v(d x d u+d y d v)}{y^{3}}$
is also a Riemannian metric on $\mathbb{H} \times \mathbb{C}$ which is invariant under the action (1.2) of G. In fact, we can see that the two-parameter family of $d s_{\alpha, \beta}^{2}(\alpha>0, \beta>0)$ provides a complete family of Riemannian metrics on $\mathbb{H} \times \mathbb{C}$ invariant under the action of (1.2) of G. It can be easily seen that the Laplace-Beltrami operator $\Delta_{\alpha, \beta}$ of $d s_{\alpha, \beta}^{2}$ is given by

$$
\begin{aligned}
\Delta_{\alpha, \beta}= & \frac{1}{\alpha} y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+\left(\frac{y}{\beta}+\frac{v^{2}}{\alpha}\right)\left(\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}\right) \\
& +\frac{2 y v}{\alpha}\left(\frac{\partial^{2}}{\partial x \partial u}+\frac{\partial^{2}}{\partial y \partial v}\right) \\
= & \frac{1}{\alpha} D+\frac{1}{\beta} \Psi
\end{aligned}
$$

Remark 2.6. By a tedious computation, we see that the scalar curvature of $(\mathbb{H} \times$ $\left.\mathbb{C}, d s^{2}\right)$ is -3 .

We want to propose the following problem to be studied in the future.
Problem 2.7. Find all the eigenfunctions of Δ.
We will give some examples of eigenfunctions of Δ.
(1) $h(x, y)=y^{\frac{1}{2}} K_{s-\frac{1}{2}}(2 \pi|a| y) e^{2 \pi i a x} \quad(s \in \mathbb{C}, a \neq 0)$ with eigenvalue $s(s-1)$, where

$$
\begin{equation*}
K_{s}(z):=\frac{1}{2} \int_{0}^{\infty} \exp \left\{-\frac{z}{2}\left(t+t^{-1}\right)\right\} t^{s-1} d t, \quad \operatorname{Re} z>0 \tag{2.16}
\end{equation*}
$$

(2) $y^{s}, y^{s} x, y^{s} u(s \in \mathbb{C})$ with eigenvalue $s(s-1)$.
(3) $y^{s} v, y^{s} u v, y^{s} x v$ with eigenvalue $s(s+1)$.
(4) $x, y, u, v, x v, u v$ with eigenvalue 0 .
(5) All Maass wave forms.

3. Maass-Jacobi forms

Let Δ be the Laplace-Beltrami operator of the Riemannian metric $d s^{2}$ on $\mathbb{H} \times \mathbb{C}$ defined in Proposition 2.4. Using this operator, we define the notion of Maass-Jacobi forms.

Definition 3.1. A smooth bounded function $f: \mathbb{H} \times \mathbb{C} \longrightarrow \mathbb{C}$ is called a MaassJacobi form if it satisfies the following conditions (MJ1)-(MJ3) :
(MJ1) $f(\tilde{\gamma} \circ(\tau, z))=f(\tau, z) \quad$ for all $\tilde{\gamma} \in \Gamma$ and $(\tau, z) \in \mathbb{H} \times \mathbb{C}$.
(MJ2) f is an eigenfunction of the Laplace-Beltrami operator Δ.
(MJ3) f has a polynomial growth, that is, f fulfills a boundedness condition.
For a complex number $\lambda \in \mathbb{C}$, we denote by $M J(\Gamma, \lambda)$ the vector space of all Maass-Jacobi forms f such that $\Delta f=\lambda f$. We note that, since $\Delta f=\lambda f$ is an elliptic partial differential equation, Maass-Jacobi forms are real analytic (see [8]). Professor Berndt kindly informed me that he also considered such automorphic forms in ([1]) (also see [4], p.82).

Let $f \in M J(\Gamma, \lambda)$ be a Maass-Jacobi form with eigenvalue λ. Then it is easy to see that the function $\phi_{f}: G \longrightarrow \mathbb{C}$ defined by

$$
\begin{equation*}
\phi_{f}(g, \alpha)=f((g, \alpha) \circ(i, 0)), \quad(g, \alpha) \in G \tag{3.1}
\end{equation*}
$$

satisfies the following conditions (MJ1) ${ }^{0}-(\mathrm{MJ} 3)^{0}$:
$(\mathrm{MJ1})^{0} \phi_{f}(\gamma x k)=\phi_{f}(x)$ for all $\gamma \in \Gamma, x \in G$ and $k \in K$.
$(\mathrm{MJ} 2)^{0} p h i_{f}$ is an eigenfunction of the Laplace-Beltrami operator Δ_{0} of $\left(G, d s_{0}^{2}\right)$, where $d s_{0}^{2}$ is a G-invariant Riemannian metric on G induced by $\left(\mathbb{H} \times \mathbb{C}, d s^{2}\right)$.
$(\mathrm{MJ} 3)^{0} \quad \phi_{f}$ has a suitable polynomial growth (cf. [5]).

For any right K-invariant function $\phi: G \longrightarrow \mathbb{C}$ on G, we define the function $f_{\phi}: \mathbb{H} \times \mathbb{C} \longrightarrow \mathbb{C}$ by

$$
\begin{equation*}
f_{\phi}(\tau, z)=\phi(g, \alpha), \quad(\tau, z) \in \mathbb{H} \times \mathbb{C} \tag{3.2}
\end{equation*}
$$

where (g, α) is an element of G such that $(g, \alpha) \circ(i, 0)=(\tau, z)$. Obviously it is well defined because (3.2) is independent of the choice of $(g, \alpha) \in G$ such that $(g, \alpha) \circ(i, 0)=(\tau, z)$. It is easy to see that if ϕ is a smooth bounded function on G satisfying the conditions (MJ1) $)^{0}-(\mathrm{MJ} 3)^{0}$, then the function f_{ϕ} defined by (3.2) is a Maass-Jacobi form.

Now we characterize Maass-Jacobi forms as smooth eigenfunctions on $S \mathcal{P}_{n} \times$ $\mathbb{R}^{(m, n)}$ satisfying a certain invariance property.

Proposition 3.2. Let $f: \mathbb{H} \times \mathbb{C} \longrightarrow \mathbb{C}$ be a nonzero Maass-Jacobi form in $M J(\Gamma, \lambda)$. Then the function $h_{f}: S \mathcal{P}_{n} \times \mathbb{R}^{(m, n)} \longrightarrow \mathbb{C}$ defined by

$$
\begin{equation*}
h_{f}(Y, V)=f\left(\left(g, V^{t} g^{-1}\right) \circ(i, 0)\right) \text { for some } g \in S L(2, \mathbb{R}) \text { with } Y=g^{t} g \tag{3.3}
\end{equation*}
$$

satisfies the following conditions:
$(\mathrm{MJ} 1)^{*} h_{f}\left(\gamma Y^{t} \gamma,(V+\delta)^{t} \gamma\right)=h_{f}(Y, V) \quad$ for all $(\gamma, \delta) \in \Gamma$ with $\gamma \in S L(2, \mathbb{Z})$ and $\delta \in$ $\mathbb{Z}^{(1,2)}$.
(MJ2)* h_{f} is an eigenfunction of the Laplace-Beltrami operator $\tilde{\Delta}$ on the homogeneous space $\left(S \mathcal{P}_{n} \times \mathbb{R}^{(m, n)}, d \tilde{s}^{2}\right)$, where $d \tilde{s}^{2}$ is the G-invariant Riemannian metric on $S \mathcal{P}_{n} \times \mathbb{R}^{(m, n)}$ induced from d \tilde{s}^{2}.
(MJ3)* h_{f} has a suitable polynomial growth.
Here if (Y, V) is a coordinate of $S \mathcal{P}_{n} \times \mathbb{R}^{(m, n)}$ given in Lemma 2.1, then the G-invariant Riemannian metric $d \tilde{s}^{2}$ and its Laplace-Beltrami operator $\tilde{\Delta}$ on $S \mathcal{P}_{n} \times$ $\mathbb{R}^{(m, n)}$ are given by

$$
d \tilde{s}^{2}=\frac{1}{y^{2}}\left(d x^{2}+d y^{2}\right)+\frac{1}{y}\left\{\left(x^{2}+y^{2}\right) d v_{1}^{2}+2 x d v_{1} d v_{2}+d v_{2}^{2}\right\}
$$

and

$$
\tilde{\Delta}=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+\frac{1}{y}\left\{\frac{\partial^{2}}{\partial v_{1}^{2}}-2 x \frac{\partial^{2}}{\partial v_{1} \partial v_{2}}+\left(x^{2}+y^{2}\right) \frac{\partial^{2}}{\partial v_{2}^{2}}\right\} .
$$

Conversely, if h is a smooth bounded function on $S \mathcal{P}_{n} \times \mathbb{R}^{(m, n)}$ satisfying the above conditions $(\mathrm{MJ} 1)^{*}-(\mathrm{MJ} 3)^{*}$, then the function $f_{h}: \mathbb{H} \times \mathbb{C} \longrightarrow \mathbb{C}$ defined by

$$
\begin{equation*}
f_{h}(\tau, z)=h\left(g^{t} g, \alpha^{t} g\right) \tag{3.4}
\end{equation*}
$$

for some $(g, \alpha) \in G$ with $(g, \alpha) \circ(i, 0)=(\tau, z)$ is a Maass-Jacobi form on $\mathbb{H} \times \mathbb{C}$.
Proof. First of all, we note that h_{f} is well defined because (3.3) is independent
of the choice of g with $Y=g^{t} g$. If $(\gamma, \delta) \in \Gamma$ with $\gamma \in \Gamma_{1}, \delta \in \mathbb{Z}^{(1,2)}$ and $(Y, V) \in S \mathcal{P}_{n} \times \mathbb{R}^{(m, n)}$ with $Y=g^{t} g$ for some $g \in S L(2, \mathbb{R})$, then the element $g_{\gamma}:=\gamma g$ satisfies $\gamma Y^{t} \gamma=\gamma g^{t}(\gamma g)$.
Thus according to the definition of h_{f}, for all $(\gamma, \delta) \in \Gamma$ and $(Y, V) \in S \mathcal{P}_{n} \times \mathbb{R}^{(m, n)}$, we have

$$
\begin{aligned}
h_{f}\left(\gamma Y^{t} \gamma,(V+\delta)^{t} \gamma\right) & =f\left(\left(\gamma g,(V+\delta)^{t} \gamma^{t}(\gamma g)^{-1}\right) \circ(i, 0)\right) \\
& =f\left(\left(\gamma g,(V+\delta)^{t} g^{-1}\right) \circ(i, 0)\right) \\
& =f\left(\left((\gamma, \delta) *\left(g, V^{t} g^{-1}\right)\right) \circ(i, 0)\right) \\
& =f\left(\left(g, V^{t} g^{-1}\right) \circ(i, 0)\right) \quad \text { (because } f \text { is } \Gamma \text {-invariant) } \\
& =h_{f}(Y, V) .
\end{aligned}
$$

Therefore this proves the condition (MJ1)*. $d \tilde{s}^{2}$ and $\tilde{\Delta}$ are obtained from Lemma 2.1 and Proposition 2.3. Hence h_{f} is an eigenfunction of $\tilde{\Delta}$. Clearly h_{f} satisfies the condition (MJ3)*.

Conversely we note that f_{h} is well defined because (3.4) is independent of the choice of $(g, \alpha) \in G$ with $(g, \alpha) \circ(i, 0)=(\tau, z)$. If $\tilde{\gamma}=(\gamma, \delta) \in \Gamma$ and $(\tau, z) \in \mathbb{H} \times \mathbb{C}$ with $(g, \alpha) \circ(i, 0)=(\tau, z)$, then we have

$$
\begin{aligned}
f_{h}(\tilde{\gamma} \circ(\tau, z)) & =f_{h}(\tilde{\gamma} \circ((g, \alpha) \circ(i, 0))) \\
& =f_{h}((\tilde{\gamma} *(g, \alpha)) \circ(i, 0)) \\
& =f_{h}\left(\left(\gamma g, \delta^{t} g^{-1}+\alpha\right) \circ(i, 0)\right) \\
& =h\left((\gamma g)^{t}(\gamma g),\left(\delta^{t} g^{-1}+\alpha\right)^{t}(\gamma g)\right) \\
& =h\left(\left(\gamma\left(g^{t} g\right)^{t} \gamma,\left(\delta+\alpha^{t} g\right)^{t} \gamma\right)\right. \\
& =h\left(g^{t} g, \alpha^{t} g\right) \\
& =f_{h}((g, \alpha) \circ(i, 0))=f_{h}(\tau, z) .
\end{aligned}
$$

Thus f_{h} satisfies the condition (MJ1). It is easy to see that f_{h} satisfies the conditions (MJ2) and (MJ3).

Definition 3.3. A smooth bounded function on G or $S \mathcal{P}_{n} \times \mathbb{R}^{(m, n)}$ is also called a Maass-Jacobi form if it satisfies the conditions (MJ1) ${ }^{0}$-(MJ3) ${ }^{0}$ or (MJ1)*-(MJ3)*.

Remark 3.4. We note that Maass wave forms are special ones of Maass-Jacobi forms. Thus the number of λ 's with $M J(\Gamma, \lambda) \neq 0$ is infinite.

Theorem 3.5. For any complex number $\lambda \in \mathbb{C}$, the vector space $M J(\Gamma, \lambda)$ is finite dimensional.
Proof. The proof follows from [10], Theorem 1, p. 8 and [5], p. 191.
4. On the group $S L_{2,1}(\mathbb{R})$

For brevity, we set $H=\mathbb{R}^{(1,2)}$. Then we have the split exact sequence

$$
0 \longrightarrow H \longrightarrow G \longrightarrow S L(2, \mathbb{R}) \longrightarrow 1
$$

We see that the unitary dual \hat{H} of H is isomorphic to \mathbb{R}^{2}. The unitary character $\chi_{(\lambda, \mu)}$ of H corresponding to $(\lambda, \mu) \in \mathbb{R}^{2}$ is given by

$$
\chi_{(\lambda, \mu)}(x, y)=e^{2 \pi i(\lambda x+\mu y)}, \quad(x, y) \in H
$$

G acts on H by conjugation and hence this action induces the action of G on \hat{H} as follows.

$$
\begin{equation*}
G \times \hat{H} \longrightarrow \hat{H}, \quad(g, \chi) \mapsto \chi^{g}, \quad g \in G, \chi \in \hat{H} \tag{4.1}
\end{equation*}
$$

where the character χ^{g} is defined by $\chi^{g}(a)=\chi\left(g a g^{-1}\right), a \in H$.
If $g=\left(g_{0}, \alpha\right) \in G$ with $g_{0} \in S L(2, \mathbb{R})$ and α in H, it is easy to check that for each $(\lambda, \mu) \in \mathbb{R}^{2}$,

$$
\begin{equation*}
\chi_{(\lambda, \mu)}^{g}=\chi_{(\lambda, \mu) g_{0}} \tag{4.2}
\end{equation*}
$$

We see easily from (4.2) that the G-orbits in $\hat{H} \cong \mathbb{R}^{2}$ consist of two orbits Ω_{0}, Ω_{1} given by

$$
\Omega_{0}=\{(0,0)\}, \quad \Omega_{1}=\mathbb{R}^{2}-\{(0,0)\}
$$

We observe that Ω_{0} is the G-orbit of $(0,0)$ and Ω_{1} is the G-orbit of any element $(\lambda, \mu) \neq 0$.

Now we choose the element $\delta=\chi_{(1,0)}$ of \hat{H}. That is, $\delta(x, y)=e^{2 \pi i x}$ for all $(x, y) \in \mathbb{R}^{2}$. It is easy to check that the stabilizer of $\chi_{(0,0)}$ is G and the stabilizer G_{δ} of δ is given by

$$
G_{\delta}=\left\{\left.\left(\left(\begin{array}{ll}
1 & 0 \\
c & 1
\end{array}\right), \alpha\right) \right\rvert\, c \in \mathbb{R}, \alpha \in \mathbb{R}^{(1,2)}\right\}
$$

We see that H is regularly embedded. This means that for every G-orbit Ω in \hat{H} and for every $\sigma \in \Omega$ with stabilizer G_{σ} of σ, the canonical bijection $G_{\sigma} \backslash G \longrightarrow \Omega$ is a homeomorphism.

According to G. Mackey ([18]), we obtain
Theorem 4.1. The irreducible unitary representations of G are the following:
(a) The irreducible unitary representations π, where the restriction of π to H is trivial and the restriction of π to $S L(2, \mathbb{R})$ is an irreducible unitary representation of $S L(2, \mathbb{R})$. For the unitary dual of $S L(2, \mathbb{R})$, we refer to [7] or [15], p. 123 .
(b) The representations $\pi_{(r)}=\operatorname{Ind}_{G_{\delta}}^{G} \sigma_{r}(r \in \mathbb{R})$ induced from the unitary character σ_{r} of G_{δ} defined by

$$
\sigma_{r}\left(\left(\left(\begin{array}{ll}
1 & 0 \\
c & 1
\end{array}\right),(\lambda, \mu)\right)\right)=\delta(r c+\lambda)=e^{2 \pi i(r c+\lambda)}, \quad c, \lambda, \mu \in \mathbb{R}
$$

Proof. The proof of the above theorem can be found in [22], p. 850.
We put
$W_{1}=\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),(0,0)\right), \quad W_{2}=\left(\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),(0,0)\right), W_{3}=\left(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),(0,0)\right)$
and

$$
W_{4}=\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),(1,0)\right), \quad W_{5}=\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),(0,1)\right)
$$

Clearly W_{1}, \cdots, W_{5} form a basis of \mathfrak{g}.
Lemma 4.2. We have the following relations.

$$
\begin{gathered}
{\left[W_{1}, W_{2}\right]=W_{3}, \quad\left[W_{3}, W_{1}\right]=2 W_{1}, \quad\left[W_{3}, W_{2}\right]=-2 W_{2}} \\
{\left[W_{1}, W_{4}\right]=0, \quad\left[W_{1}, W_{5}\right]=-W_{4}, \quad\left[W_{2}, W_{4}\right]=W_{5}, \quad\left[W_{2}, W_{5}\right]=0} \\
{\left[W_{3}, W_{4}\right]=W_{4}, \quad\left[W_{3}, W_{5}\right]=-W_{5}, \quad\left[W_{4}, W_{5}\right]=0}
\end{gathered}
$$

Proof. The proof follows from an easy computation.
Let $\mathfrak{g}_{\mathbb{C}}=\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$ be the complexfication of \mathfrak{g}. We put

$$
\mathfrak{k}_{\mathbb{C}}=\mathbb{C}\left(W_{1}-W_{2}\right), \quad \mathfrak{p}_{ \pm}=\mathbb{C}\left(W_{3} \pm i\left(W_{1}+W_{2}\right)\right)
$$

Then we have

$$
\mathfrak{g}_{\mathbb{C}}=\mathfrak{k}_{\mathbb{C}}+\mathfrak{p}_{+}+\mathfrak{p}_{-}, \quad\left[\mathfrak{k}_{\mathbb{C}}, \mathfrak{p}_{ \pm}\right] \subset \mathfrak{p}_{ \pm}, \quad \mathfrak{p}_{-}=\overline{\mathfrak{p}_{+}}
$$

We note that $\mathfrak{k}_{\mathbb{C}}$ is the complexification of the Lie algebra \mathfrak{k} of K.
We set $\mathfrak{a}=\mathbb{R} W_{3}$. By Lemma 4.2, the roots of \mathfrak{g} relative to \mathfrak{a} are given by $\pm e, \pm 2 e$, where e is the linear functional $e: \mathfrak{a} \longrightarrow \mathbb{C}$ defined by $e\left(W_{3}\right)=1$. The set $\Sigma^{+}=\{e, 2 e\}$ is the set of positive roots of \mathfrak{g} relative to \mathfrak{a}. We recall that for a root α, the root space \mathfrak{g}_{α} is defined by

$$
\mathfrak{g}_{\alpha}=\{X \in \mathfrak{g} \mid[H, X]=\alpha(H) X \text { for all } H \in \mathfrak{a}\}
$$

Then we see easily that

$$
\mathfrak{g}_{e}=\mathbb{R} W_{4}, \quad \mathfrak{g}_{-e}=\mathbb{R} W_{5}, \quad \mathfrak{g}_{2 e}=\mathbb{R} W_{1}, \quad \mathfrak{g}_{-2 e}=\mathbb{R} W_{2}
$$

and

$$
\mathfrak{g}=\mathfrak{g}_{-2 e} \oplus \mathfrak{g}_{-e} \oplus \mathfrak{a} \oplus \mathfrak{g}_{e} \oplus \mathfrak{g}_{2 e}
$$

Proposition 4.3. The Killing form B of \mathfrak{g} is given by

$$
\begin{equation*}
B\left(\left(X_{1}, Z_{1}\right),\left(X_{2}, Z_{2}\right)\right)=5 \sigma\left(X_{1} X_{2}\right) \tag{4.3}
\end{equation*}
$$

where $\left(X_{1}, Z_{1}\right),\left(X_{2}, Z_{2}\right) \in \mathfrak{g}$ with $X_{1}, X_{2} \in \mathfrak{s l}(2, \mathbb{R})$ and $Z_{1}, Z_{2} \in \mathbb{R}^{(1,2)}$. Hence the Killing form is highly nondegenerate. The adjoint representation $A d$ of G is given by

$$
\begin{equation*}
A d((g, \alpha))(X, Z)=\left(g X g^{-1},\left(Z-\alpha^{t} X\right)^{t} g\right) \tag{4.4}
\end{equation*}
$$

where $(g, \alpha) \in G$ with $g \in S L(2, \mathbb{R}), \alpha \in \mathbb{R}^{(1,2)}$ and $(X, Z) \in \mathfrak{g}$ with $X \in$ $\mathfrak{s l}(2, \mathbb{R}), Z \in \mathbb{R}^{(1,2)}$.
Proof. The proof follows immediately from a direct computation.
An Iwasawa decomposition of the group G is given by

$$
\begin{equation*}
G=N A K \tag{4.5}
\end{equation*}
$$

where

$$
N=\left\{\left.\left(\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right), a\right) \in G \right\rvert\, x \in \mathbb{R}, a \in \mathbb{R}^{(1,2)}\right\}
$$

and

$$
A=\left\{\left.\left(\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right), 0\right) \in G \right\rvert\, a>0\right\} .
$$

An Iwasawa decomposition of the Lie algebra \mathfrak{g} of G is given by

$$
\mathfrak{g}=\mathfrak{n}+\mathfrak{a}+\mathfrak{k}
$$

where

$$
\mathfrak{n}=\left\{\left.\left(\left(\begin{array}{ll}
0 & x \\
0 & 0
\end{array}\right), Z\right) \in \mathfrak{g} \right\rvert\, x \in \mathbb{R}, Z \in \mathbb{R}^{(1,2)}\right\}
$$

and

$$
\mathfrak{a}=\left\{\left.\left(\left(\begin{array}{cc}
x & 0 \\
0 & -x
\end{array}\right), 0\right) \in \mathfrak{g} \right\rvert\, x \in \mathbb{R}\right\}
$$

In fact, \mathfrak{a} is the Lie algebra of A and \mathfrak{n} is the Lie algebra of N.
Now we compute the Lie derivatives for functions on G explicitly. We define the differential operators $L_{k}, R_{k}(1 \leq k \leq 5)$ on G by

$$
L_{k} f(\tilde{g})=\left.\frac{d}{d t}\right|_{t=0} f\left(\tilde{g} * \exp t W_{k}\right)
$$

and

$$
R_{k} f(\tilde{g})=\left.\frac{d}{d t}\right|_{t=0} f\left(\exp t W_{k} * \tilde{g}\right)
$$

where $f \in C^{\infty}(G)$ and $\tilde{g} \in G$.
By an easy calculation, we get

$$
\begin{aligned}
& \exp t W_{1}=\left(\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right),(0,0)\right), \quad \exp t W_{2}=\left(\left(\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right),(0,0)\right) \\
& \exp t W_{3}=\left(\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right),(0,0)\right), \quad \exp t W_{4}=\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),(t, 0)\right)
\end{aligned}
$$

and

$$
\exp t W_{5}=\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),(0, t)\right)
$$

Now we use the following coordinates (g, α) in G given by

$$
g=\left(\begin{array}{ll}
1 & x \tag{4.6}\\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
y^{1 / 2} & 0 \\
0 & y^{-1 / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

and

$$
\begin{equation*}
\alpha=\left(\alpha_{1}, \alpha_{2}\right) \tag{4.7}
\end{equation*}
$$

where $x, \alpha_{1}, \alpha_{2} \in \mathbb{R}, y>0$ and $0 \leq \theta<2 \pi$. By an easy computation, we have

$$
\begin{aligned}
L_{1} & =y \cos 2 \theta \frac{\partial}{\partial x}+y \sin 2 \theta \frac{\partial}{\partial y}+\sin ^{2} \theta \frac{\partial}{\partial \theta}-\alpha_{2} \frac{\partial}{\partial \alpha_{1}} \\
L_{2} & =y \cos 2 \theta \frac{\partial}{\partial x}+y \sin 2 \theta \frac{\partial}{\partial y}-\cos ^{2} \theta \frac{\partial}{\partial \theta}-\alpha_{1} \frac{\partial}{\partial \alpha_{2}} \\
L_{3} & =-2 y \sin 2 \theta \frac{\partial}{\partial x}+2 y \cos 2 \theta \frac{\partial}{\partial y}+\sin 2 \theta \frac{\partial}{\partial \theta}-\alpha_{1} \frac{\partial}{\partial \alpha_{1}}+\alpha_{2} \frac{\partial}{\partial \alpha_{2}} \\
L_{4} & =\frac{\partial}{\partial \alpha_{1}} \\
L_{5} & =\frac{\partial}{\partial \alpha_{2}} \\
R_{1} & =\frac{\partial}{\partial x}, \\
R_{2} & =\left(y^{2}-x^{2}\right) \frac{\partial}{\partial x}-2 x y \frac{\partial}{\partial y}-y \frac{\partial}{\partial \theta}, \\
R_{3} & =2 x \frac{\partial}{\partial x}+2 y \frac{\partial}{\partial y}, \\
R_{4} & =y^{-1 / 2} \cos \theta \frac{\partial}{\partial \alpha_{1}}+y^{-1 / 2} \sin \theta \frac{\partial}{\partial \alpha_{2}}, \\
R_{5} & =-y^{-1 / 2}(x \cos \theta+y \sin \theta) \frac{\partial}{\partial \alpha_{1}}+y^{-1 / 2}(y \cos \theta-x \sin \theta) \frac{\partial}{\partial \alpha_{2}} .
\end{aligned}
$$

In fact, the calculation for L_{3} and R_{5} can be found in [22], p. 837-839.
We define the differential operators $\mathbb{L}_{j}(1 \leq j \leq 5)$ on $\mathbb{H} \times \mathbb{C}$ by

$$
\mathbb{L}_{j} f(\tau, z)=\left.\frac{d}{d t}\right|_{t=0} f\left(\exp t W_{j} \circ(\tau, z)\right), \quad 1 \leq j \leq 5
$$

where $f \in C^{\infty}(\mathbb{H} \times \mathbb{C})$. Using the coordinates $\tau=x+i y$ and $z=u+i v$ with x, y, u, v real and $y>0$, we can easily compute the explicit formulas for \mathbb{L}_{j} 's. They are given by

$$
\begin{aligned}
& \mathbb{L}_{1}=\left(x^{2}-y^{2}\right) \frac{\partial}{\partial x}+2 x y \frac{\partial}{\partial y}+(x u-y v) \frac{\partial}{\partial u}+(y u+x v) \frac{\partial}{\partial v} \\
& \mathbb{L}_{2}=-\frac{\partial}{\partial x} \\
& \mathbb{L}_{3}=-2 x \frac{\partial}{\partial x}-2 y \frac{\partial}{\partial y}-u \frac{\partial}{\partial u}-v \frac{\partial}{\partial v} \\
& \mathbb{L}_{4}=x \frac{\partial}{\partial u}+y \frac{\partial}{\partial v} \\
& \mathbb{L}_{5}=\frac{\partial}{\partial u}
\end{aligned}
$$

5. The decomposition of $L^{2}(\Gamma \backslash G)$

Let R be the right regular representation of G on the Hilbert space $L^{2}(\Gamma \backslash G)$. We set $G_{1}=S L(2, \mathbb{R})$. Then the decomposition of R is given by

$$
\begin{equation*}
L^{2}(\Gamma \backslash G)=L_{\mathrm{disc}}^{2}\left(\Gamma_{1} \backslash G_{1}\right) \bigoplus L_{\mathrm{cont}}^{2}\left(\Gamma_{1} \backslash G_{1}\right) \bigoplus \int_{-\infty}^{\infty} \mathcal{H}_{(r)} d r \tag{5.1}
\end{equation*}
$$

where $L_{\text {disc }}^{2}\left(\Gamma_{1} \backslash G_{1}\right)$ (resp. $\left.L_{\text {cont }}^{2}\left(\Gamma_{1} \backslash G_{1}\right)\right)$ is the discrete (resp. continuous) part of $L^{2}\left(\Gamma_{1} \backslash G_{1}\right)(\mathrm{cf}.[14],[15])$ and $\mathcal{H}_{(r)}$ is the representation space of $\pi_{(r)}(\mathrm{cf}$. Theorem 4.1. (b)).

We recall the result of Rolf Berndt (cf. [2], [3], [4]). Let $H_{\mathbb{R}}^{(1,1)}$ denote the Heisenberg group which is \mathbb{R}^{3} as a set and is equipped with the following multiplication

$$
(\lambda, \mu, \kappa)\left(\lambda^{\prime}, \mu^{\prime}, \kappa^{\prime}\right)=\left(\lambda+\lambda^{\prime}, \mu+\mu^{\prime}, \kappa+\kappa^{\prime}+\lambda \mu^{\prime}-\mu \lambda^{\prime}\right) .
$$

We let $G^{J}=S L(2, \mathbb{R}) \ltimes H_{\mathbb{R}}^{(1,1)}$ be the semidirect product of $S L(2, \mathbb{R})$ and $H_{\mathbb{R}}^{(1,1)}$, called the Jacobi group whose multiplication law is given by

$$
(M,(\lambda, \mu, \kappa)) \cdot\left(M^{\prime},\left(\lambda^{\prime}, \mu^{\prime}, \kappa^{\prime}\right)\right)=\left(M M^{\prime},\left(\tilde{\lambda}+\lambda^{\prime}, \tilde{\mu}+\mu^{\prime}, \kappa+\kappa^{\prime}+\tilde{\lambda} \mu^{\prime}-\tilde{\mu} \lambda^{\prime}\right)\right)
$$

with $M, M^{\prime} \in S L(2, \mathbb{R}),(\lambda, \mu, \kappa),\left(\lambda^{\prime}, \mu^{\prime}, \kappa^{\prime}\right) \in H_{\mathbb{R}}^{(1,1)}$ and $(\tilde{\lambda}, \tilde{\mu})=(\lambda, \mu) M^{\prime}$. Obviously the center $Z\left(G^{J}\right)$ of G^{J} is given by $\{(0,0, \kappa) \mid \kappa \in \mathbb{R}\}$. We denote

$$
H_{\mathbb{Z}}^{(1,1)}=\left\{(\lambda, \mu, \kappa) \in H_{\mathbb{R}}^{(1,1)} \mid \lambda, \mu, \kappa \text { integral }\right\} .
$$

We set

$$
\Gamma^{J}=S L(2, \mathbb{Z}) \ltimes H_{\mathbb{Z}}^{(1,1)}, \quad K^{J}=K \times Z\left(G^{J}\right)
$$

R. Berndt proved that the decomposition of the right regular representation R^{J} of G^{J} in $L^{2}\left(\Gamma^{J} \backslash G^{J}\right)$ is given by

$$
\begin{equation*}
L^{2}\left(\Gamma^{J} \backslash G^{J}\right)=\left(\bigoplus_{m, n \in \mathbb{Z}} \mathcal{H}_{m, n}\right) \bigoplus\left(\bigoplus_{\nu= \pm \frac{1}{2}} \int_{\substack{\operatorname{Re} s=0 \\ \operatorname{Im} s>0}} \mathcal{H}_{m, s, \nu} d s\right) \tag{5.2}
\end{equation*}
$$

where the $\mathcal{H}_{m, n}$ is the irreducible unitary representation isomorphic to the discrete series $\pi_{m, k}^{ \pm}$or the principal series $\pi_{m, s, \nu}$, and the $\mathcal{H}_{m, s, \nu}$ is the representation space of $\pi_{m, s, \nu}$ (cf. [4], p. 47-48). For more detail on the decomposition of $L^{2}\left(\Gamma^{J} \backslash G^{J}\right)$, we refer to [4], p. 75-103.

Since $\mathbb{H} \times \mathbb{C}=K^{J} \backslash G^{J}=K \backslash G$, the space of the Hilbert space $L^{2}(\Gamma \backslash(\mathbb{H} \times \mathbb{C}))$ consists of K^{J}-fixed elements in $L^{2}\left(\Gamma^{J} \backslash G^{J}\right)$ or K-fixed elements in $L^{2}(\Gamma \backslash G)$. Hence we obtain the spectral decomposition of $L^{2}(\Gamma \backslash(\mathbb{H} \times \mathbb{C}))$ for the Laplacian Δ or $\Delta_{\alpha, \beta}$ (cf. Proposition 2.4 or Remark 2.5).

6. Remarks on Fourier expansions of Maass-Jacobi forms

We let $f: \mathbb{H} \times \mathbb{C} \longrightarrow \mathbb{C}$ be a Maass-Jacobi form with $\Delta f=\lambda f$. Then f satisfies the following invariance relations

$$
\begin{equation*}
f(\tau+n, z)=f(\tau, z) \quad \text { for all } n \in \mathbb{Z} \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(\tau, z+n_{1} \tau+n_{2}\right)=f(\tau, z) \quad \text { for all } n_{1}, n_{2} \in \mathbb{Z} \tag{6.2}
\end{equation*}
$$

Therefore f is a smooth function on $\mathbb{H} \times \mathbb{C}$ which is periodic in x and u with period 1. So f has the following Fourier series

$$
\begin{equation*}
f(\tau, z)=\sum_{n \in \mathbb{Z}} \sum_{r \in \mathbb{Z}} c_{n, r}(y, v) e^{2 \pi i(n x+r u)} . \tag{6.3}
\end{equation*}
$$

For two fixed integers n and r, we have to calculate the function $c_{n, r}(y, v)$. For brevity, we put $F(y, v)=c_{n, r}(y, v)$. Then F satisfies the following differential equation

$$
\begin{equation*}
\left[y^{2} \frac{\partial^{2}}{\partial y^{2}}+\left(y+v^{2}\right) \frac{\partial^{2}}{\partial v^{2}}+2 y v \frac{\partial^{2}}{\partial y \partial v}-\left\{(a y+b v)^{2}+b^{2} y+\lambda\right\}\right] F=0 \tag{6.4}
\end{equation*}
$$

Here $a=2 \pi n$ and $b=2 \pi r$ are constant. We note that the function $u(y)=$ $y^{\frac{1}{2}} K_{s-\frac{1}{2}}(2 \pi|n| y)$ satisfies the differential equation (6.4) with $\lambda=s(s-1)$. Here $K_{s}(z)$ is the K-Bessel function defined by (2.16) (see Lebedev [16] or Watson [21]). The problem is that if there exist solutions of the differential equation (6.4), we have to find their solutions explicitly.

Acknowledgement. This work started while I was staying at Department of Mathematics, Harvard University during the fall semester in 1996. I would like to give my hearty thanks to Professor Don Zagier for his kind advice on this work and for pointing out some errors in the first version. I also want to my deep thanks to Professor Rolf Berndt for his interest on this work and for letting me know his works.

References

[1] R. Berndt, Some Differential Operators in the Theory of Jacobi Forms, IHES/M/84/10.
[2] R. Berndt, The Continuous Part of $L^{2}\left(\Gamma^{J} \backslash G^{J}\right)$ for the Jacobi Group G^{J}, Abh. Math. Sem. Univ. Hamburg, 60(1990), 225-248.
[3] R. Berndt and S. Böcherer, Jacobi Forms and Discrete Series Representations of the Jacobi Group, Math. Z., 204(1990), 13-44.
[4] R. Berndt and R. Schmidt, Elements of the Representation Theory of the Jacobi Group, Birkhäuser, 163(1998).
[5] A. Borel and H. Jacquet, Automorphic forms and automorphic representations, Proc. Symposia in Pure Math., XXXIII(Part 1)(1979), 189-202.
[6] D. Bump, Automorphic Forms and Representations, Cambridge University Press, (1997).
[7] R. W. Donley, Irreducible Representations of $S L(2, \mathbb{R})$, Proceedings of Symposia in Pure Mathematics on Representation Theory and Automorphic Forms, American Math. Soc., 61(1997), 51-59.
[8] P. R. Garabedian, Partial Differential Equations, Wiley, New York, (1964).
[9] S. Gelbart, Automorphic forms on adele groups, Annals of Math. Studies, Princeton Univ. Press, 83(1975).
[10] Harish-Chandra, Automorphic forms on semi-simple Lie groups, Notes by J.G.M. Mars, Lecture Notes in Math., Springer-Verlag, Berlin-Heidelberg-New York, 62(1968).
[11] S. Helgason, Differential operators on homogeneous spaces, Acta Math., 102(1959), 239-299.
[12] S. Helgason, Groups and geometric analysis, Academic Press, (1984).
[13] H. Iwaniec, Introduction to the spectral theory of automorphic forms, Biblioteca de la Revista Mathemática Iberoamericana, Madrid, (1995).
[14] T. Kubota, Elementary Theory of Eisenstein Series, John Wiley and Sons, New York, (1973).
[15] S. Lang, $S L_{2}(\mathbb{R})$, Springer-Verlag, (1985).
[16] N. N. Lebedev, Special Functions and their Applications, Dover, New York, (1972).
[17] H. Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichlescher Reihen durch Funktionalgleichung, Math. Ann., 121(1949), 141-183.
[18] G. Mackey, Unitary Representations of Group Extensions 1, Acta Math., 99(1958), 265-311.
[19] A. Selberg, Hamonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., 20(1956), 47-87.
[20] A. Terras, Harmonic analysis on symmetric spaces and applications I, Springer-Verlag, (1985).
[21] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, London, (1962).
[22] J.-H. Yang, On the group $S L(2, \mathbb{R}) \ltimes \mathbb{R}^{(m, 2)}$, J. Korean Math. Soc., 40(5), 831-867.

