1 |
R. Campoamor-Stursburg and S. G. Low, Virtual copies of semisimple Lie algebras in enveloping algebras of semidirect products and Casimir operators, J. Phys. A: Math. Theor., 42(2009), 065205.
DOI
ScienceOn
|
2 |
S. Helgason, Groups and geometric analysis, Academic Press, New York (1984).
|
3 |
R. Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, The Schur lectures (1992) (Tel Aviv), Israel Math. Conf. Proceedings, vol. 8 (1995), 1-182.
|
4 |
M. Itoh, H. Ochiai and J.-H. Yang, Invariant differential operators on Siegel-Jacobi space, preprint, 2013.
|
5 |
N. N. Lebedev, Special Functions and their Applications, Dover, New York (1972).
|
6 |
H. Maass, Die Differentialgleichungen in der Theorie der Siegelschen Modulfunktionen, Math. Ann., 126(1953), 44-68.
DOI
|
7 |
H. Maass, Siegel modular forms and Dirichlet series, Lecture Notes in Math., vol. 216, Springer-Verlag, Berlin-Heidelberg-New York (1971).
|
8 |
H. Ochiai, A remark on the generators of invariant differential operators on Siegel- Jacobi space of the smallest size, preprint, 2011.
|
9 |
A. Pitale, Jacobi Maass forms, Abh. Math. Sem. Univ. Hamburg, 79(2009), 87-111.
DOI
|
10 |
C. Quesne, Casimir operators of semidirect sum Lie algebras, J. Phys. A: Math. Gen., 21(1988), L321-L324.
DOI
ScienceOn
|
11 |
J.-P. Serre, A Course in Arithmetic, Springer-Verlag, Berlin-Heidelberg-New York (1973).
|
12 |
C. L. Siegel, Symplectic Geometry, Amer. J. Math., 65(1943), 1-86
DOI
ScienceOn
|
13 |
N.-P. Skoruppa, Explicit formulas for the Fourier coefficients of Jacobi and elliptic modular forms, Invent. Math., 102(1990), 501-520.
DOI
|
14 |
G. N. Watson, The Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, London (1962).
|
15 |
J.-H. Yang, The Method of Orbits for Real Lie Groups, Kyungpook Math. J., 42(2)(2002), 199-272 or arXiv:math.RT/0602056.
과학기술학회마을
|
16 |
J.-H. Yang, A note on Maass-Jacobi forms, Kyungpook Math. J. 43(4)(2003), 547- 566 or arXiv:math.NT/0612387.
|
17 |
J.-H. Yang, A note on a fundamental domain for Siegel-Jacobi space, Houston J. Math., 32(3)(2006), 701-712 or arXiv:math.NT/0507218.
|
18 |
J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi space, Journal of Number Theory, 127(2007), 83-102 or arXiv:math.NT/0507215.
DOI
ScienceOn
|
19 |
J.-H. Yang, A partial Cayley transform for Siegel-Jacobi disk, J. Korean Math. Soc., 45(2008), 781-794 or arXiv:math.NT/0507216.
과학기술학회마을
DOI
ScienceOn
|
20 |
J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi disk, Chinese Annals of Mathematics, 31B(1)(2010), 85-100 or arXiv:math.NT/0507217.
|
21 |
J.-H. Yang, Invariant Differential Operators on the Siegel-Jacobi Space, arXiv: 1107.0509v1 [math.NT], 4 July 2011.
|
22 |
R. Berndt and R. Schmidt, Elements of the Representation Theory of the Jacobi Group, Progress in Mathematics, 163, Birkhauser, Basel, 1998.
|
23 |
W. Borho, Primitive und vollprimitive Ideale in Einhullenden von so(5;C), J. Algebra, 43(1976), 619-654.
DOI
|
24 |
K. Bringmann, C. Conley and O. K. Richter, Jacobi forms over complex quadratic fields via the cubic Casimier operators, preprint.
|
25 |
K. Bringmann and O. K. Richter, Zagier-type dualities and lifting maps for harmonic Maass-Jacobi forms, Advances in Math., 225(2010), 2298-2315.
DOI
ScienceOn
|
26 |
C. L. Siegel, Symplectic Geometry, Gesammelte Abhandlungen, no. 41, vol. II, Springer-Verlag (1966), 274-359
|
27 |
C. Conley and M. Raum, Harmonic Maass-Jacobi forms of degree 1 with higher rank indices, arXiv:1012.289/v1 [math.NT], 13 Dec 2010.
|
28 |
C. L. Siegel, Symplectic Geometry, Academic Press, New York and London (1964)
|