Acknowledgement
Supported by : NSF
References
- R. Berndt and R. Schmidt, Elements of the Representation Theory of the Jacobi Group, Progress in Mathematics, 163. Birkhauser Verlag, Basel, 1998.
- B. D. Boe, Homomorphisms between generalized Verma modules, Trans. Amer. Math. Soc. 288 (1985), no. 2, 791-799. https://doi.org/10.1090/S0002-9947-1985-0776404-0
- B. D. Boe, Homomorphisms between generalized Verma modules, Ph.D. thesis, Yale University, 1982.
- G. Bol, Invarianten linearer differential gleichungen, Abh. Math. Sem. Univ. Hamburg 16 (1949), no. 3-4, 1-28. https://doi.org/10.1007/BF02941082
- D. Bump, Automorphic Forms and Representations, Cambridge Studies in Advanced Mathematics, 55, Cambridge University Press, Cambridge, 1997.
- D. Bump and Y.-J. Choie, Derivatives of modular forms of negative weight, Pure Appl. Math. Q. 2 (2006), no. 1, part 1, 111-133. https://doi.org/10.4310/PAMQ.2006.v2.n1.a4
- Y.-J. Choie and H. Kim, An analogy of Bol's result on Jacobi forms and Siegel modular forms, J. Math. Anal. Appl. 257 (2001), no. 1, 79-88. https://doi.org/10.1006/jmaa.2000.7317
- Harish-Chandra, The characters of semisimple Lie groups, Trans. Amer. Math. Soc. 83 (1956), 98-163. https://doi.org/10.1090/S0002-9947-1956-0080875-7
- M. Harris, Special values of zeta functions attached to Siegel modular forms, Ann. Sci. Ecole Norm. Sup. (4) 14 (1981), no. 1, 77-120. https://doi.org/10.24033/asens.1398