• Title/Summary/Keyword: Internally-Matched

Search Result 16, Processing Time 0.021 seconds

S-Band Internally-Matched High Efficiency and High Power Amplifier Using GaN HEMT Die (GaN HEMT Die를 이용한 S-대역 내부 정합형 고효율 고출력 증폭기)

  • Kim, Sang-Hoon;Choi, Jin-Joo;Choi, Gil-Wong;Kim, Hyoung-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.6
    • /
    • pp.540-545
    • /
    • 2015
  • This paper presents the design, fabrication and measurement results of a S-band internally-matched power amplifier using Gallium Nitride High Electron Mobility Transistor(GaN HEMT) die. In order to fabricate the S-band internally-matched power amplifier, a high dielectric substrate and alumina were used for input/output matching circuits. The measured output power is 55.4 dBm, the drain efficiency is 78 % and the power gain is 11 dB under pulse operation at the frequency of 3 GHz.

Ku-Band 50-W GaN HEMT Internally-Matched Power Amplifier (Ku-대역 50 W급 GaN HEMT 내부 정합 전력증폭기)

  • Kim, Seil;Lee, Min-Pyo;Hong, Sung-June;Lim, Jun-Su;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.8-11
    • /
    • 2019
  • In this paper, a Ku-band 50-W internally-matched power amplifier is designed and fabricated using a CGHV1J070D GaN HEMT from Wolfspeed. To obtain the same magnitudes and phases for the output signals of the unit transistor cells, which constitute a power transistor, a slit pattern and an asymmetric T-junction are used in the input and output matching circuits. The internally-matched power amplifier is fabricated on two different thin-film substrates with relative dielectric constants of 40 and 9.8, respectively, and is measured under pulsed conditions with a pulse period of $330{\mu}s$ and a duty cycle of 6%. The measured results show a maximum output power of 50~73 W, a drain efficiency of 35.4~46.4%, and a power gain of 4.5~6.5 dB from 16.2 to 16.8 GHz.

A study on 12W SSPA for earth station transmonder at ku-band (Ku-band 지구국 중계기를 위한 12W SSPA에 관한 연구)

  • 조창환;여인혁;홍의석
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.72-80
    • /
    • 1996
  • This paper presetns the development of a SSPA operating at KU-band(14~14.5 GHz) in order of replace TWTA used in the terrestria transponder of a satellite communication. The driving stage of SSPA uses internally matched 2W, 4W, 8W FET and the power stage is coupled with two internally matched 8W FET by branch-line cominer. The SSPA is fabricated with oth the RF circuit and the bias circuitry operating temperature compensation, regulation and sequence on aluminum housing. The SSPA testing resutls implemented in this way show 24.8$\pm$1dB small-signal gain, 41dBm P1dB power, a typical two tone C/IM3, -33dBc with single carrier backed off 6dB from p1dB, and gain stability over temeprature (-30~50)$\pm$1dB.

  • PDF

S-Band 300-W GaN HEMT Harmonic-Tuned Internally-Matched Power Amplifier (S-대역 300 W급 GaN HEMT 고조파 튜닝 내부 정합 전력증폭기)

  • Kang, Hyun-Seok;Lee, Ik-Joon;Bae, Kyung-Tae;Kim, Seil;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.290-298
    • /
    • 2018
  • Herein, an S-band internally-matched power amplifier that shows a power capability of 300 W in a Long Term Evolution(LTE) band 7 is designed and fabricated using a CGHV40320D GaN HEMT from Wolfspeed. Based on the nonlinear model, the optimum source and load impedance are extracted from the source-pull and load-pull simulations at the fundamental and harmonic frequencies, and the harmonic impedance tuning circuits are implemented inside a ceramic package. The internally matched power amplifier, which is fabricated using a thin-film substrate with a high relative permittivity of 40 and an RF35TC PCB substrate, is measured at the pulsed condition with a pulse period of 1 ms and a duty cycle of 10%. The measured results show a maximum output power of 257~323 W, a drain efficiency of 64~71%, and a power gain of 11.5~14.0 dB at 2.62~2.69 GHz. The LTE-based measurement shows a drain efficiency of 42~49% and an ACLR of less than -30 dBc(excluding 2.62 GHz) at an average power of 79 W.

X-Band 50 W Pulse-Mode GaN HEMT Internally Matched Power Amplifier (X-대역 50 W급 펄스 모드 GaN HEMT 내부 정합 전력 증폭기)

  • Kang, Hyun-Seok;Bae, Kyung-Tae;Lee, Ik-Joon;Cha, Hyen-Won;Min, Byoung-Gue;Kang, Dong-Min;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.10
    • /
    • pp.892-899
    • /
    • 2016
  • In this paper, an X-band 50 W internally matched power amplifier is designed and fabricated using an $80{\times}150{\mu}m$ GaN HEMT that is developed by the $0.25{\mu}m$ GaN HEMT process of ETRI. The optimum source and load impedances are experimentally extracted from the loadpull measurement using impedance-transform-prematching circuits, and the transistor performance is predicted. The power performance of the internally matched power amplifier, whose matching circuits are fabricated on a substrate with ${\varepsilon}_r$ of 10.2, is measured under the pulsed mode of $100{\mu}s$ pulse period and 10 % duty cycle, and the best output power of 47.46 dBm(55.5 W) and the power-added efficiency of 46.6 % are obtained at 9.2 GHz. The output power of 47~47.46 dBm(50~55.7 W) is measured in 9.0~9.5 GHz, and the power-added efficiency is measured to be greater than 43 % in 9.0~9.3 GHz and above 36 % in 9.4~9.5 GHz.

A 2.65 GHz Doherty Power Amplifier Using Internally-Matched GaN-HEMT (내부정합된 GaN-HEMT를 이용한 2.65 GHz Doherty 전력증폭기)

  • Kang, Hyunuk;Lee, Hwiseob;Lim, Wonseob;Kim, Minseok;Lee, Hyoungjun;Yoon, Jeongsang;Lee, Dongwoo;Yang, Youngoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.269-276
    • /
    • 2016
  • This paper presents a 2.65 GHz Doherty power amplifier with internally-matched GaN HEMT. Internal matching circuits were adopted to match its harmonic impedances inside the package. Simultaneously, due to the partially matched fundamental impedance, input and output matching networks become simpler. Bond wires and parasitic elements of transistor package were predicted by EM simulation. For the LTE signal with 6.5 dB PAPR, the implemented Doherty power amplifier shows a power gain of 13.0 dB, a saturated output power of 55.4 dBm, an efficiency of 49.1 %, and ACLR of -26.3 dBc at 2.65 GHz with an operating voltage of 48 V.

C-Band Internally Matched GaAs Power Amplifier with Minimized Memory Effect (Memory Effect를 최소화한 C-대역 내부 정합 GaAs 전력증폭기)

  • Choi, Woon-Sung;Lee, Kyung-Hak;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.11
    • /
    • pp.1081-1090
    • /
    • 2013
  • In this paper, a C-band 10 W power amplifier with internally matched input and output matching circuit is designed and fabricated. The used power transistor for the power amplifier is GaAs pHEMT bare-chip. The wire bonding analysis considering the size of the capacitor and the position of transistor pad improves the accurate design. The matching circuit design with the package effect using EM simulation is performed. To reduce the unsymmetry of IMD3 in 2-tone measurement due to the memory effect, the bias circuit minimizing the memory effect is proposed and employed. The measured $P_{1dB}$, power gain, and power added efficiency are 39.8~40.4 dBm, 9.7~10.4 dB, and 33.4~38.0 %, respectively. Adopting the proposed bias circuit, the difference between the upper and lower IMD3 is less than 0.76 dB.

An implementation of 60W X-band Cascade SSPA for Marine Radar System (선박 레이다용 60W X-band Cascade SSPA 구현)

  • Kim, Min-Soo;Jang, Yeon-Gil;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • In this paper, An X-band solid state power amplifier(SSPA) for pulse compressed microwave signal with 60Watt power and power added efficiency(PAE) above 30% is described. Designed 60Watt high power amplifier(HPA) was implemented by cascade coupled amplifiers, and it is consisted on three stage drive amplifiers with internally matched GaAs FET and one stage main power amplifier with an internally matched GaN HEMT. The designed SSPA has performance with more than total power gain 37dB and output power 48dBm(60-W) in condition of frequency range $9.41{\pm}0.03GHz$, pulse period width under 1ms and duty cycle under 10%. The implemented SSPA can apply to high quality digital marine radar applications with pulse compression technique.

Design of 14.0-14.5 GHz 3Watt SSPA for VSAT Applications (VSAT용 14.0-14.5 GHz 3와트 SSPA의 설계 및 제작연구)

  • 전광일;박진우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.5
    • /
    • pp.920-927
    • /
    • 1994
  • A development of an efficient 14.0~14.5GHz 3 Watt SSPA is described in this paper, which is applicable to the very small aperture terminal(VSAT) for bidirectional data and voice signal transmission in low cost and with small size. The SSPA consists of two stages of low noise amplifiers using the low noise GaAs FETs. two stages of medium power amplifiers using the medium power GaAs FETs, and three stages of power amplifiers including a balanced amplifier using an internally matched power GaAs FET. The achieved with this seven stage amplifiers are 42dB signal power gain, 7dB noise figure, 35dBm output power at 1dB gain compression point and 2.0 and 1.5 input and output VSWR respectively.

  • PDF

Development of the Low Noise Amplifier for PCS Base Station and Transponder (PCS 기지국 및 중계기용 저잡음 증폭기의 구현)

  • 전중성;원영수;김동일
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.3
    • /
    • pp.353-358
    • /
    • 1998
  • This paper presents development of a LNA operating at 1.71 ∼ 1.18 GHz used for a receiver of KOREA PCS base station and transponder. Using resistive decoupling circuits, a signal at low frequency is dissipated by a resistor. This design method increases the stability of the LNA and suitable for input stage matching. The LNA consists of low noise GaAs FET ATF-10136 and internally matched VNA-25. The LNA is fabricated with both the RF circuit and the self-bias circuits in aluminum housing. As a result, the characteristics of the LNA implemented here shows 30 dB in gain and 0.85 dB in noise figure.

  • PDF