• Title/Summary/Keyword: Heterostructure

Search Result 249, Processing Time 0.024 seconds

Ge thin layer transfer on Si substrate for the photovoltaic applications (Si 기판에서의 광소자 응용을 위한 Ge 박막의 Transfer 기술개발)

  • 안창근;조원주;임기주;오지훈;양종헌;백인복;이성재
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.743-746
    • /
    • 2003
  • We have successfully used hydrophobic direct-wafer bonding, along with H-induced layer splitting of Ge, to transfer 700nm think, single-crystal Ge films to Si substrates. Optical and electrical properties have been also observed on these samples. Triple-junction solar cell structures gown on these Ge/Si heterostructure templates show comparable photoluminescence intensity and minority carrier lifetime to a control structure grown on bulk Ge. When heavily doped p$^{+}$Ge/p$^{+}$Si wafer bonded heterostructures were bonded, ohmic interfacial properties with less than 0.3Ω$\textrm{cm}^2$ specific resistance were observed indicating low loss thermal emission and tunneling processes over and through the potential barrier. Current-voltage (I-V) characteristics in p$^{+}$Ge/pSi structures show rectifying properties for room temperature bonded structures. After annealing at 40$0^{\circ}C$, the potential barrier was reduced and the barrier height no longer blocks current flow under bias. From these observations, interfacial atomic bonding structures of hydrophobically wafer bonded Ge/Si heterostructures are suggested.ested.

  • PDF

A Study on the Calibration of GaAs-based 0.1-$\mu\textrm{m}$ $\Gamma$-gate MHEMT DC/RF Characteristics for the Development and Fabrication of over-100-GHz Millimeter-wave HEMT devices (100GHz 이상의 밀리미터파 HEMT 소 제작 및 개발을 위한 GaAs기반 0.1$\mu\textrm{m}$ $\Gamma$-게이트MHEMT의 DC/RF 특성에 대한 calibration 연구)

  • 손명식;이복형;이진구
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.751-754
    • /
    • 2003
  • Metamorphic HEMTs (MHEMTs) have emerged as excellent challenges for the design and fabrication of high-speed HEMTs for millimeter-wave applications. Some of improvements result from improved mobility and larger conduction band discontinuity in the channel, leading to more efficient modulation doping, better confinement, and better device performance compared with pseudomorphic HEMTs. We have studied the calibration on the DC and RF characteristics of the MHEMT device using I $n_{0.53}$G $a_{0.47}$As/I $n_{0.52}$A1$_{0.48}$As modulation-doped heterostructure on the GaAs wafer. For the optimized device performance simulation, we calibrated the device performance of 0.1-${\mu}{\textrm}{m}$ $\Gamma$-gate MHEMT fabricated in our research center using the 2D ISE-DESSIS device simulator. With this calibrated parameter set, we have obtained very good reproducibility. The device simulation on the DC and RF characteristics exhibits good reproducibility for our 0.1-${\mu}{\textrm}{m}$ -gate MHEMT device compared with the measurements. We expect that our calibration result can help design over-100-GHz MHEMT devices for better device performance.ormance.

  • PDF

Device Characteristics of AlGaN/GaN MIS-HFET using $Al_2O_3$ Based High-k Dielectric

  • Park, Ki-Yeol;Cho, Hyun-Ick;Lee, Eun-Jin;Hahm, Sung-Ho;Lee, Jung-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.107-112
    • /
    • 2005
  • We present an AlGaN/GaN metal-insulator-semiconductor-heterostructure field effect transistor (MIS-HFET) with an $Al_2O_3-HfO_2$ laminated high-k dielectric, deposited by plasma enhanced atomic layer deposition (PEALD). Based on capacitance-voltage measurements, the dielectric constant of the deposited $Al_2O_3-HfO_2$ laminated layer was estimated to be as high as 15. The fabricated MIS-HFET with a gate length of 102 m exhibited a maximum drain current of 500 mA/mm and maximum tr-ansconductance of 125 mS/mm. The gate leakage current was at least 4 orders of magnitude lower than that of the reference HFET. The pulsed current-voltage curve revealed that the $Al_2O_3-HfO_2$ laminated dielectric effectively passivated the surface of the device.

Quantum Modeling of Nanoscale Symmetric Double-Gate InAlAs/InGaAs/InP HEMT

  • Verma, Neha;Gupta, Mridula;Gupta, R.S.;Jogi, Jyotika
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.342-354
    • /
    • 2013
  • The aim of this work is to investigate and study the quantum effects in the modeling of nanoscale symmetric double-gate InAlAs/InGaAs/InP HEMT (High Electron Mobility Transistor). In order to do so, the carrier concentration in InGaAs channel at gate lengths ($L_g$) 100 nm and 50 nm, are modelled by a density gradient model or quantum moments model. The simulated results obtained from the quantum moments model are compared with the available experimental results to show the accuracy and also with a semi-classical model to show the need for quantum modeling. Quantum modeling shows major variation in electron concentration profiles and affects the device characteristics. The two triangular quantum wells predicted by the semi-classical model seem to vanish in the quantum model as bulk inversion takes place. The quantum effects thus become essential to incorporate in nanoscale heterostructure device modeling.

Effect of electron-beam irradiation on leakage current of AlGaN/GaN HEMTs on sapphire

  • Oh, Seung Kyu;Song, Chi Gyun;Jang, Taehoon;Kwak, Joon Seop
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.617-621
    • /
    • 2013
  • This study examined the effect of electron-beam (E-beam) irradiation on the electrical properties of n-GaN, AlGaN and AlGN/GaN structures on sapphire substrates. E-beam irradiation resulted in a significant decrease in the gate leakage current of the n-GaN, AlGaN and HEMT structure from $4.0{\times}10^{-4}A$, $6.5{\times}10^{-5}A$, $2.7{\times}10^{-8}A$ to $7.7{\times}10^{-5}A$, $7.7{\times}10^{-6}A$, $4.7{\times}10^{-9}A$, respectively, at a drain voltage of -10V. Furthermore, we also investigated the effect of E-beam irradiation on the AlGaN surface in AlGaN/GaN heterostructure high electron mobility transistors(HEMTs). The results showed that the maximum drain current density of the AlGaN/GaN HEMTs with E-beam irradiation was greatly improved, when compared to that of the AlGaN/GaN HEMTs without E-beam irradiation. These results strongly suggest that E-beam irradiation is a promising method to reduce leakage current of AlGaN/GaN HEMTs on sapphire through the neutralization the trap.

Fabrication of dual wavelength photodetector using quantum well intermixing (다중양자우물의 상호 섞임 현상을 이용한 다중 파장 검출기의 제작)

  • 여덕호;윤경훈;김항로;김성준
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.10-11
    • /
    • 2000
  • 광통신을 이용한 근거리 전송과 장거리 전송에서 1.3 및 1.55 $mu extrm{m}$ 파장 영역의 빛이 사용되고 있다. 향후, 각 가정마다 광선로를 연결하는 Fiber-to-the-home (FTTH)의 개념과 광CATV가 발전함에 따라 1.3 및 1.55 $\mu\textrm{m}$ 빛을 검출하는 소자와 송신하는 소자가 필요하게 된다. 본 논문에서는 이러한 다중파장을 검출할 수 있는 집적소자를 제작 및 측정하였다. 본 논문에서 사용된 epitaxial layer의 구조는 N-InP 기판 위에 1 $\mu\textrm{m}$의 n-InP buffer층, 5층의InGaAs/InGaAsP 다중양자우물과 0.2 $\mu\textrm{m}$ InGaAsP separate confinement heterostructure (SCH) 층, 0.5$\mu\textrm{m}$ InP clad층과 0.1 $\mu\textrm{m}$ InGaAs cap 층으로 구성되어있다. 모든 epi 층은 InP 기판에 격자 정합이 되어있다. 다중양자우물구조는 84 $\AA$의 InGaAs 우물층과 100 $\AA$의 InGaAsP 장벽층으로 구성되며, 상온에서 0.787 eV (1.575 $\mu\textrm{m}$)의 bandgap energy를 갖도록 설계하였다. (중략)

  • PDF

Fabrication and characterization of optoelectronic device using CdSe nanocrystal quantum dots/single-walled carbon nanotubes (카드뮴 셀레나이드 양자점과 단일벽 탄소나노튜브로 구성된 이종 나노 소재를 기반으로 한 광전소자의 제작 및 특성평가)

  • Shim, Hyung-Cheoul;Jeong, So-Hee;Han, Chang-Soo;Kim, Soo-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.160-167
    • /
    • 2010
  • In this paper, we fabricated the optoelectronic device based on Cadmium selenide(CdSe) nanocrystal quantum dots (NQDs)/single-walled carbon nanotubes(SWNTs) heterostructure using dieletrophoretic force. The efficient charge transfer phenomena from CdSe to SWNT make CdSe-Pyridine(py)-SWNT unique heterostructures for novel optoelectronic device. The conductivity of CdSe-py-SWNT was increased when it was exposed at ultra violet(UV) lamp, and varied as a function of wavelength of incident light.

Electrical Characteristics of InAlAs/InGaAs/InAlAs Pseudomorphic High Electron Mobility Transistors under Sub-Bandgap Photonic Excitation

  • Kim, H.T.;Kim, D.M.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.3
    • /
    • pp.145-152
    • /
    • 2003
  • Electrical gate and drain characteristics of double heterostructure InAlAs/InGaAs pseudomorphic HEMTs have been investigated under sub-bandgap photonic excitation ($hv). Drain $(V_{DS})-,{\;}gate($V_{DS})-$, and optical power($P_{opt}$)-dependent variation of the abnormal gate leakage current and associated physical mechanisms in the PHEMTs have been characterized. Peak gate voltage ($V_{GS,P}$) and the onset voltage for the impact ionization ($V_{GS.II}$) have been extracted and empirical model for their dependence on the $V_{DS}$ and $P_{opt} have been proposed. Anomalous gate and drain current, both under dark and under sub-bandgap photonic excitation, have been modeled as a parallel connection of high performance PHEMT with a poor satellite FET as a parasitic channel. Sub-bandgap photonic characterization, as a function of the optical power with $h\nu=0.799eV$, has been comparatively combined with those under dark condition for characterizing the bell-shaped negative humps in the gate current and subthreshold drain leakage under a large drain bias.

DC Characteristics of P-Channel Metal-Oxide-Semiconductor Field Effect Transistors with $Si_{0.88}Ge_{0.12}(C)$ Heterostructure Channel

  • Choi, Sang-Sik;Yang, Hyun-Duk;Han, Tae-Hyun;Cho, Deok-Ho;Kim, Jea-Yeon;Shim, Kyu-Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.106-113
    • /
    • 2006
  • Electrical properties of $Si_{0.88}Ge_{0.12}(C)$ p-MOSFETs have been exploited in an effort to investigate $Si_{0.88}Ge_{0.12}(C)$ channel structures designed especially to suppress diffusion of dopants during epitaxial growth and subsequent fabrication processes. The incorporation of 0.1 percent of carbon in $Si_{0.88}Ge_{0.12}$ channel layer could accomodate stress due to lattice mismatch and adjust bandgap energy slightly, but resulted in deteriorated current-voltage properties in a broad range of operation conditions with depressed gain, high subthreshold current level and many weak breakdown electric field in gateoxide. $Si_{0.88}Ge_{0.12}(C)$ channel structures with boron delta-doping represented increased conductance and feasible use of modulation doped device of $Si_{0.88}Ge_{0.12}(C)$ heterostructures.

Design of Electrical equivalent circuit of Planar Buried Heterostructure Laser Diode (평면 매립형 레이저 다이오드의 전기적 등가회로 모델)

  • Kim Jeong-Ho;Park Dong-Kook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.718-723
    • /
    • 2006
  • Optical module plays an important role in the construction of high speed communication network. Laser diode is a component of optical module, and its characteristics are dependent of temperature, so many researches are reported. In this paper, we proposed the electrical equivalent circuit of PBH-LD based on the rate equations. And, the two leakage paths exit outside the active region. One path is converted pn-diode and the other path is converted two transistors using npn-Tr and pnp-Tr. In order to reduce the leakage currents, we observed the dependence of carrier concentrations of current blocking layers using PSPICE simulator.