DOI QR코드

DOI QR Code

Quantum Modeling of Nanoscale Symmetric Double-Gate InAlAs/InGaAs/InP HEMT

  • Verma, Neha (Microelectronics Research Laboratory, Department of Electronic Science, A.R.S.D College, University of Delhi, South Campus) ;
  • Gupta, Mridula (Semiconductor Device Research Laboratory, Department of Electronic Science, University of Delhi, South Campus) ;
  • Gupta, R.S. (Department of Electronics and Communication Engineering, Maharaja Agrasen Institute of Technology) ;
  • Jogi, Jyotika (Microelectronics Research Laboratory, Department of Electronic Science, A.R.S.D College, University of Delhi, South Campus)
  • Received : 2012.07.14
  • Accepted : 2013.05.08
  • Published : 2013.08.31

Abstract

The aim of this work is to investigate and study the quantum effects in the modeling of nanoscale symmetric double-gate InAlAs/InGaAs/InP HEMT (High Electron Mobility Transistor). In order to do so, the carrier concentration in InGaAs channel at gate lengths ($L_g$) 100 nm and 50 nm, are modelled by a density gradient model or quantum moments model. The simulated results obtained from the quantum moments model are compared with the available experimental results to show the accuracy and also with a semi-classical model to show the need for quantum modeling. Quantum modeling shows major variation in electron concentration profiles and affects the device characteristics. The two triangular quantum wells predicted by the semi-classical model seem to vanish in the quantum model as bulk inversion takes place. The quantum effects thus become essential to incorporate in nanoscale heterostructure device modeling.

Keywords

References

  1. L. Esaki and R. Tsu, "Superlattice and negative differential conductivity in semiconductors," IBM J. Res. and Dev., Vol.14, No.1, pp.61-65, Jan., 1970. https://doi.org/10.1147/rd.141.0061
  2. P. Ho, P. C. Chao, K. H. G. Duh, A. A. Jabra, J. M. Ballingall and P. M. Smith, "Extremely high gain, low noise InA1As/InGaAs HEMTs grown by MBE," IEDM 1988, Technical Digest, 11-14, pp. 184-186, Dec., 1988.
  3. U. K. Mishra, A. S. Brown, S. E. Rosenbaum, M. J. Delaney, S. Vaughn and K. White, "Noise performance of submicrometer AlInAs-GaInAs HEMTs," IEEE Trans. on Electron Dev., Vol.35, No.12, pp.2441-2442, Dec., 1988.
  4. E. Sano, "InP HEMT lightwave communication ICs for 40 Gbit/s and beyond," IPRM 1999, 11th IEEE International Conference on Indium Phosphide and Related Materials, 1999, 16-20, pp.299-304, May, 1999.
  5. Y. Umeda, T. Enoki, T. Otsuji, T. Suemitsu, H. Yokoyama and Y. Ishii, "Ultrahigh-Speed IC technologies using InP based HEMTs for future optical communication systems," IEICE Trans. on Electronics, Vol.E82-C, No.3, pp.409-418, Mar., 1999.
  6. T. Enoki, H. Yokoyama, Y. Umeda and T. Otsuji, "Ultra High speed integrated circuits using InP based HEMTs," Jpn. J. Appl. Phys., Vol.37, No.3B, pp.1359-1364, Mar., 1998. https://doi.org/10.1143/JJAP.37.1359
  7. Y. Kwon, D. Pavlidis, T. L. Brock and D. C. Streit, "Experimental and theoretical characteristics of high performance pseudomorphic double heterojunction $InAlAs/In_{0.7}Ga_{0.3}As/InAlAs $ HEMTs," IEEE Trans. on Electron Dev., vol.42, No.6, pp.1017-1025, Jun., 1995. https://doi.org/10.1109/16.387231
  8. Y. Kwon, D. Pavlidis, T. L. Brock, G. I. Ng, K. L. Tan and J. R. Velebir, "Submicron pseudomorphic double heterojunction $InAlAs/In_{0.7}Ga_{0.3}As/InAlAs $ HEMTs with high cut-off and current-drive capability," IPRM 1993, 5th IEEE International Conference on Indium Phosphide and Related Materials, 1993, 19-22, pp.465-468, Apr., 1993.
  9. N. Wichmann, I. Duszynski, S. Bollaert, J. Mateos, X. Wallart and A. Cappy, "100nm InAlAs/InGaAs Double-Gate HEMT using transferred substrate," IEDM 2004, Technical Digest, 13-15, pp. 1023- 1026, Dec., 2004.
  10. B. G. Vasallo, N. Wichmann, S. Bollaert , A. Cappy, T. Gonzalez , D. Pardo and J. Mateos, "Monte Carlo Comparison Between InP-Based Double-Gate and Standard HEMTs," EuMIC 2006, 1st European Microwave Integrated Circuits Conference, 2006, 10-13, pp.304-307, Sep., 2006.
  11. A-J Shey and W.H. Ku, "An analytical current- voltage characteristics model for high electron mobility transistors based on nonlinear chargecontrol formulation," IEEE Trans. on Electron Dev., Vol.36, No.10, pp.2299-2306, Oct., 1989. https://doi.org/10.1109/16.40914
  12. H. Brech, T. Grave, T. Simlinger and S. Selberherr, "Optimization of pseudomorphic HEMTs supported by numerical simulation," IEEE Trans. on Electron Dev., Vol.44, No.11, pp.1822-1828, Nov., 1997. https://doi.org/10.1109/16.641348
  13. H. Luth, "Nanostructures and Semiconductor Electronics," phys. stat. sol., Vol.192, No.2, pp.287-299, Dec., 1995. https://doi.org/10.1002/pssb.2221920206
  14. E. Sano, "Simulation of Nanometer-scale Semiconductor Devices Considering Quantum Effects," Int. J. RF. Microw CE.,Vol.14, pp.283-289, Oct., 2004. https://doi.org/10.1002/mmce.20011
  15. G. Krokidis, J.P. Xanthakis, N.K. Uzunoglu, "A fully 2-dimensional, quantum mechanical calculation of short-channel and drain induced barrier lowering effects in HEMTs," Solid-State Electron, Vol.52, No.5, pp.625-631, May, 2008. https://doi.org/10.1016/j.sse.2007.10.021
  16. ATLAS User's Manual, Silvaco International, 2010.
  17. C. L. Gardner and C. A. Ringhofer, "Smooth Quantum potential for the Hydrodynamic Model," Phys. Rev. E., Vol.53, No.1, pp.157-167, Jan., 1996. https://doi.org/10.1103/PhysRevE.53.157
  18. A.Wettstein, Quantum Effects in MOS Devices (Hartung-Gorre Verlag Konstanz, 2000).
  19. A. Wettstein, A. Schenk, and W. Fichtner, "Quantum Device-Simulation with the Density Gradient Model on Unstructured Grids," IEEE Trans. Electron Dev., Vol.42, No.2, pp.279-283, Feb., 2001.
  20. A. Wettstein, O. Penzin and E. Lyumkis, "Integration of Density Gradient Model into a General Purpose Device Simulator," VLSI Des., Vol.15, No.4, pp.751-759, 2002. https://doi.org/10.1080/1065514021000012363
  21. B. G. Vasallo, N. Wichmann, S. Bollaert, Y. Roelens, A. Cappy, T. Gonzalez, D. Pardo, and J. Mateos, "Comparison Between the Dynamic Performance of Double- and Single-Gate AlInAs/ InGaAs HEMTs," IEEE Trans. on Electron Dev., Vol.54, No.11, pp.2815-2822, Nov., 2007. https://doi.org/10.1109/TED.2007.907801
  22. J. R. Zhou and D. K. Ferry, "Simulation of ultrasmall GaAs MESFET using quantum moment equations," IEEE Trans. on Electron Dev., Vol.39, No.3, pp.473-478, Mar., 1992. https://doi.org/10.1109/16.123465
  23. V. Mitin, V.A. Kochelap and M.A. Stroscio, "Quantum Heterostructures: Microelectronics and Optoelectronics," Cambridge University Press, U.S.A, 1999.
  24. N. Wichman, I. Duszynski, X. Wallart, S. Bollaert and A. Cappy, "InAlAs-InGaAs Double-Gate HEMTs on Transferred Substrate," IEEE Electron Dev Lett., Vol.25, No.6, pp.354-356, Jun., 2004. https://doi.org/10.1109/LED.2004.829029
  25. D. Guerra, R. Akis, F. A. Marino, D. K. Ferry, S. M. Goodnick, M. Saraniti, "Aspect Ratio Impact on RF and DC Performance of State-of-the-Art Short- Channel GaN and InGaAs HEMTs," IEEE Electron Dev Lett., Vol.31, No.11, pp.1217-1219, Nov., 2010.