DOI QR코드

DOI QR Code

Fabrication and characterization of optoelectronic device using CdSe nanocrystal quantum dots/single-walled carbon nanotubes

카드뮴 셀레나이드 양자점과 단일벽 탄소나노튜브로 구성된 이종 나노 소재를 기반으로 한 광전소자의 제작 및 특성평가

  • Shim, Hyung-Cheoul (School of Mechanical, Aerospace and Systems Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology(KAIST)) ;
  • Jeong, So-Hee (Nano-Mechanical Systems Research Center, Korea Institute of Machinery and Materials(KIMM)) ;
  • Han, Chang-Soo (Nano-Mechanical Systems Research Center, Korea Institute of Machinery and Materials(KIMM)) ;
  • Kim, Soo-Hyun (School of Mechanical, Aerospace and Systems Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology(KAIST))
  • 심형철 (한국과학기술원 기계항공 시스템 공학부 기계공학) ;
  • 정소희 (한국기계연구원 나노역학팀) ;
  • 한창수 (한국기계연구원 나노역학팀) ;
  • 김수현 (한국과학기술원 기계항공 시스템 공학부 기계공학)
  • Received : 2010.01.08
  • Accepted : 2010.03.24
  • Published : 2010.03.31

Abstract

In this paper, we fabricated the optoelectronic device based on Cadmium selenide(CdSe) nanocrystal quantum dots (NQDs)/single-walled carbon nanotubes(SWNTs) heterostructure using dieletrophoretic force. The efficient charge transfer phenomena from CdSe to SWNT make CdSe-Pyridine(py)-SWNT unique heterostructures for novel optoelectronic device. The conductivity of CdSe-py-SWNT was increased when it was exposed at ultra violet(UV) lamp, and varied as a function of wavelength of incident light.

Keywords

References

  1. A. P. Alivisato, "Semiconductor clusters, nanocrystals, and quantum dots", Science, vol. 271, pp. 933-937, 1996. https://doi.org/10.1126/science.271.5251.933
  2. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics", Science, vol. 307, pp. 538-544, 2005. https://doi.org/10.1126/science.1104274
  3. K. Yun, D. Lee, H. Kim, and E. Yoon, "Microbead-based bio-assay using quantum dot fluorescence in a microfluidic chip", J. Kor. Sensors Soc., vol. 14, no. 5, pp. 308-312, 2005. https://doi.org/10.5369/JSST.2005.14.5.308
  4. H. Lee, K. Baek, M. Lee, J. Lee, and S. Hahm, "Properties and SPICE modeling for a Schottky diode fabricated on the cracked GaN epitaxial layers on (111) silicon", J. Kor. Sensors Soc., vol. 14, no. 2, pp. 96-100, 2005. https://doi.org/10.5369/JSST.2005.14.2.096
  5. A.J. Nozik, "Quantum dot solar cells", Physica E, vol. 14, pp. 115-120. 2002. https://doi.org/10.1016/S1386-9477(02)00374-0
  6. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, "Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum", Nano Lett., vol. 9, pp. 2532-2536. 2009. https://doi.org/10.1021/nl9002969
  7. A. Madhukar, S. Lu, A. Konkar, Y. Zhang, M. Ho, S. M. Hughes, and A. P. Alivisatos, "Integrated semiconductor nanocrystal and epitaxical nanostructure systems: structural and optical Behavior", Nano Lett., vol. 5, pp. 479-482, 2005. https://doi.org/10.1021/nl047947+
  8. D. C. Oertel, M. G. Bawendi, A. C. Arango, and V. Bulovic, "Photodetectors based on treated CdSe quantum-dot films", Appl. Phys. Lett., vol. 87, pp. 213505, 2005. https://doi.org/10.1063/1.2136227
  9. C. B. Murray, C. R. Kagan, and M. G. Bawendi, "Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices", Science, vol. 270, pp. 1335-1338, 1995. https://doi.org/10.1126/science.270.5240.1335
  10. D. Yu, C. Wang, and P. Guyot-Sionnest, "n-type conducting CdSe nanocrystal solids", Science, vol. 300, pp. 1277-1280, 2003. https://doi.org/10.1126/science.1084424
  11. V. J. Porter, S. Geyer, J. E. Halpert, M. A. Kastner, and M. G. Bawendi, "Photoconduction in annealed and chemically treated CdSe/ZnS inorganic nanocrystal films", J. Phys. Chem. C, vol. 112, pp. 2308-2316, 2008.
  12. M. V. Jarosz, V. J. Porter, B. R. Fisher, M. A. Kastner, and M. G. Bawendi, "Photoconductivity studies of treated CdSe quantum dot films exhibiting increased exciton ionization efficiency", Phys. Rev. B, vol. 70, pp. 195327, 2004. https://doi.org/10.1103/PhysRevB.70.195327
  13. S. Ravindran, S. Chaudhary, B. Colburn, M. Ozkan, and C. S. Ozkan, "Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications", Nano Lett., vol. 3, pp. 447-453, 2003. https://doi.org/10.1021/nl0259683
  14. S. Ravindran, K. N. Bozhilov, and C. S. Ozkan, "Self assembly of ordered artificial solids of semiconducting ZnS capped CdSe nanoparticles at carbon nanotube ends", Carbon, vol. 42, pp. 1537-1542, 2004. https://doi.org/10.1016/j.carbon.2004.01.071
  15. B. J. Landi, C. M. Evans, J. J. Worman, S. L. Castro, S. G. Bailey, and R. P. Raffaelle, "Noncovalent attachment of CdSe quantum dots to single wall carbon nanotubes", Mat. Lett., vol. 60, pp. 3502-3506, 2006. https://doi.org/10.1016/j.matlet.2006.03.057
  16. L. Hu, Y. L. Zhao, K. Ryu, C. Zhou, J. F. Stoddart, and G. Gruner, "Light-induced charge transfer in Pyrene/CdSe-SWNT hybrids", Adv. Mater., vol. 20, pp. 939-946, 2008. https://doi.org/10.1002/adma.200701125
  17. M. Olek, T. Bulsgen, M. Hilgendorff, and M. Giersig, "Quantum dot modified multiwall carbon nanotubes", J. Phys. Chem. B, vol. 110, pp. 12901-12904, 2006. https://doi.org/10.1021/jp061453e
  18. B. K. Yen, A. Gunther, M. A. Schmidt, K. F. Jensen, and M. G. Bawendi, "A microfabricated gasliquid segmented flow reactor for high-temperature synthesis: the case of CdSe quantum dots", Angew. Chem. Int. Ed., vol. 44, pp. 5447-5451, 2005. https://doi.org/10.1002/anie.200500792
  19. E. Kucur, L. Qu, G. A. Riegler, G. A. Urban, and T. Nann, "Determination of quantum confinement in CdSe nanocrystals by cyclic voltammetry", J. Chem. Phys., vol. 119, pp. 2333-2337, 2003. https://doi.org/10.1063/1.1582834
  20. A. L. Efros and M. Rosen, "The electronic structure of semiconductor nanocrystals", Annu. Rev. Mater. Sci., vol. 30, pp. 475-521, 2000. https://doi.org/10.1146/annurev.matsci.30.1.475
  21. S. Kazaoui, N. Minami, and N. Matsuda, "Electrochemical tuning of electronic states in single-wall carbon nanotubes studied by In situ absorption spectroscopy and AC resistance", Appl. Phys. Lett., vol. 78, pp. 3433-3435, 2001. https://doi.org/10.1063/1.1372208
  22. R. J. Chen, N. R. Franklin, J. Kong, J. Cao, T. W. Tombler, Y. Zhang, and H. Dai, "Molecular photodesorption from single-walled carbon nanotubes", Appl. Phys. Lett., vol. 79. pp. 2258-2060, 2001. https://doi.org/10.1063/1.1408274
  23. M. E. Itkis, F. Borodics, A. Yu, and R. C. Haddon, "Bolometric infrared photoresponse of suspended single-walled carbon nanotube films", Science, vol. 312, pp. 413-416, 2006. https://doi.org/10.1126/science.1125695
  24. C. L. Kane and E. J. Mele, "Ratio problem in single carbon nanotube fluorescence spectroscopy", Phys. Rev. Lett., vol. 90, pp. 207401, 2006. https://doi.org/10.1103/PhysRevLett.90.207401
  25. I. A. Levitsky and W. B. Euler, "Photoconductivity of single-wall carbon nanotubes under continuous-wave near-infrared illumination", Appl. Phys. Lett., vol. 83, pp. 1857-1859, 2003. https://doi.org/10.1063/1.1606099
  26. X. Qiu, M. Freitag, V. Perebeinos, and P. Avouris, "Photoconductivity spectra of single-carbon nanotubes: Implications on the nature of their excited states", Nano Lett., vol. 5, pp. 749-752, 2005. https://doi.org/10.1021/nl050227y
  27. S. H. Jhi, S. G. Louie, and M. L. Cohe, "Electronic properties of oxidized carbon nanotubes", Phys. Rev. Lett., vol. 85, pp. 1710-1713, 2000. https://doi.org/10.1103/PhysRevLett.85.1710
  28. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, "Nanotube molecular wires as chemical sensors", Science, vol. 287, pp. 622-625, 2000. https://doi.org/10.1126/science.287.5453.622
  29. P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, "Extreme oxygen sensitivity of electronic properties of carbon nanotubes", Science, vol. 287, pp. 1801-1804, 2000. https://doi.org/10.1126/science.287.5459.1801
  30. S. Kazaoui, N. Minami, and N. Matsuda, "Electro-chemical tuning of electronic states in single-wall carbon nanotubes studied by in situ absorption spectroscopy and ac resistance", Appl. Phys. Lett., vol. 78, pp. 3433-3435, 2001. https://doi.org/10.1063/1.1372208