Browse > Article
http://dx.doi.org/10.5369/JSST.2010.19.2.160

Fabrication and characterization of optoelectronic device using CdSe nanocrystal quantum dots/single-walled carbon nanotubes  

Shim, Hyung-Cheoul (School of Mechanical, Aerospace and Systems Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology(KAIST))
Jeong, So-Hee (Nano-Mechanical Systems Research Center, Korea Institute of Machinery and Materials(KIMM))
Han, Chang-Soo (Nano-Mechanical Systems Research Center, Korea Institute of Machinery and Materials(KIMM))
Kim, Soo-Hyun (School of Mechanical, Aerospace and Systems Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology(KAIST))
Publication Information
Journal of Sensor Science and Technology / v.19, no.2, 2010 , pp. 160-167 More about this Journal
Abstract
In this paper, we fabricated the optoelectronic device based on Cadmium selenide(CdSe) nanocrystal quantum dots (NQDs)/single-walled carbon nanotubes(SWNTs) heterostructure using dieletrophoretic force. The efficient charge transfer phenomena from CdSe to SWNT make CdSe-Pyridine(py)-SWNT unique heterostructures for novel optoelectronic device. The conductivity of CdSe-py-SWNT was increased when it was exposed at ultra violet(UV) lamp, and varied as a function of wavelength of incident light.
Keywords
nanocrystal quantum dot(NQD); single-walled carbon nanotube(SWNT); charge transfer;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 R. J. Chen, N. R. Franklin, J. Kong, J. Cao, T. W. Tombler, Y. Zhang, and H. Dai, "Molecular photodesorption from single-walled carbon nanotubes", Appl. Phys. Lett., vol. 79. pp. 2258-2060, 2001.   DOI   ScienceOn
2 M. E. Itkis, F. Borodics, A. Yu, and R. C. Haddon, "Bolometric infrared photoresponse of suspended single-walled carbon nanotube films", Science, vol. 312, pp. 413-416, 2006.   DOI   ScienceOn
3 C. L. Kane and E. J. Mele, "Ratio problem in single carbon nanotube fluorescence spectroscopy", Phys. Rev. Lett., vol. 90, pp. 207401, 2006.   DOI   ScienceOn
4 I. A. Levitsky and W. B. Euler, "Photoconductivity of single-wall carbon nanotubes under continuous-wave near-infrared illumination", Appl. Phys. Lett., vol. 83, pp. 1857-1859, 2003.   DOI   ScienceOn
5 X. Qiu, M. Freitag, V. Perebeinos, and P. Avouris, "Photoconductivity spectra of single-carbon nanotubes: Implications on the nature of their excited states", Nano Lett., vol. 5, pp. 749-752, 2005.   DOI   ScienceOn
6 S. H. Jhi, S. G. Louie, and M. L. Cohe, "Electronic properties of oxidized carbon nanotubes", Phys. Rev. Lett., vol. 85, pp. 1710-1713, 2000.   DOI   ScienceOn
7 J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, "Nanotube molecular wires as chemical sensors", Science, vol. 287, pp. 622-625, 2000.   DOI   ScienceOn
8 P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, "Extreme oxygen sensitivity of electronic properties of carbon nanotubes", Science, vol. 287, pp. 1801-1804, 2000.   DOI   ScienceOn
9 S. Kazaoui, N. Minami, and N. Matsuda, "Electro-chemical tuning of electronic states in single-wall carbon nanotubes studied by in situ absorption spectroscopy and ac resistance", Appl. Phys. Lett., vol. 78, pp. 3433-3435, 2001.   DOI   ScienceOn
10 S. Ravindran, S. Chaudhary, B. Colburn, M. Ozkan, and C. S. Ozkan, "Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications", Nano Lett., vol. 3, pp. 447-453, 2003.   DOI   ScienceOn
11 S. Ravindran, K. N. Bozhilov, and C. S. Ozkan, "Self assembly of ordered artificial solids of semiconducting ZnS capped CdSe nanoparticles at carbon nanotube ends", Carbon, vol. 42, pp. 1537-1542, 2004.   DOI   ScienceOn
12 B. J. Landi, C. M. Evans, J. J. Worman, S. L. Castro, S. G. Bailey, and R. P. Raffaelle, "Noncovalent attachment of CdSe quantum dots to single wall carbon nanotubes", Mat. Lett., vol. 60, pp. 3502-3506, 2006.   DOI   ScienceOn
13 L. Hu, Y. L. Zhao, K. Ryu, C. Zhou, J. F. Stoddart, and G. Gruner, "Light-induced charge transfer in Pyrene/CdSe-SWNT hybrids", Adv. Mater., vol. 20, pp. 939-946, 2008.   DOI   ScienceOn
14 M. Olek, T. Bulsgen, M. Hilgendorff, and M. Giersig, "Quantum dot modified multiwall carbon nanotubes", J. Phys. Chem. B, vol. 110, pp. 12901-12904, 2006.   DOI   ScienceOn
15 B. K. Yen, A. Gunther, M. A. Schmidt, K. F. Jensen, and M. G. Bawendi, "A microfabricated gasliquid segmented flow reactor for high-temperature synthesis: the case of CdSe quantum dots", Angew. Chem. Int. Ed., vol. 44, pp. 5447-5451, 2005.   DOI   ScienceOn
16 H. Lee, K. Baek, M. Lee, J. Lee, and S. Hahm, "Properties and SPICE modeling for a Schottky diode fabricated on the cracked GaN epitaxial layers on (111) silicon", J. Kor. Sensors Soc., vol. 14, no. 2, pp. 96-100, 2005.   DOI   ScienceOn
17 E. Kucur, L. Qu, G. A. Riegler, G. A. Urban, and T. Nann, "Determination of quantum confinement in CdSe nanocrystals by cyclic voltammetry", J. Chem. Phys., vol. 119, pp. 2333-2337, 2003.   DOI   ScienceOn
18 A. L. Efros and M. Rosen, "The electronic structure of semiconductor nanocrystals", Annu. Rev. Mater. Sci., vol. 30, pp. 475-521, 2000.   DOI
19 S. Kazaoui, N. Minami, and N. Matsuda, "Electrochemical tuning of electronic states in single-wall carbon nanotubes studied by In situ absorption spectroscopy and AC resistance", Appl. Phys. Lett., vol. 78, pp. 3433-3435, 2001.   DOI   ScienceOn
20 A.J. Nozik, "Quantum dot solar cells", Physica E, vol. 14, pp. 115-120. 2002.   DOI   ScienceOn
21 P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, "Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum", Nano Lett., vol. 9, pp. 2532-2536. 2009.   DOI   ScienceOn
22 A. Madhukar, S. Lu, A. Konkar, Y. Zhang, M. Ho, S. M. Hughes, and A. P. Alivisatos, "Integrated semiconductor nanocrystal and epitaxical nanostructure systems: structural and optical Behavior", Nano Lett., vol. 5, pp. 479-482, 2005.   DOI   ScienceOn
23 D. C. Oertel, M. G. Bawendi, A. C. Arango, and V. Bulovic, "Photodetectors based on treated CdSe quantum-dot films", Appl. Phys. Lett., vol. 87, pp. 213505, 2005.   DOI   ScienceOn
24 M. V. Jarosz, V. J. Porter, B. R. Fisher, M. A. Kastner, and M. G. Bawendi, "Photoconductivity studies of treated CdSe quantum dot films exhibiting increased exciton ionization efficiency", Phys. Rev. B, vol. 70, pp. 195327, 2004.   DOI   ScienceOn
25 C. B. Murray, C. R. Kagan, and M. G. Bawendi, "Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices", Science, vol. 270, pp. 1335-1338, 1995.   DOI   ScienceOn
26 D. Yu, C. Wang, and P. Guyot-Sionnest, "n-type conducting CdSe nanocrystal solids", Science, vol. 300, pp. 1277-1280, 2003.   DOI   ScienceOn
27 V. J. Porter, S. Geyer, J. E. Halpert, M. A. Kastner, and M. G. Bawendi, "Photoconduction in annealed and chemically treated CdSe/ZnS inorganic nanocrystal films", J. Phys. Chem. C, vol. 112, pp. 2308-2316, 2008.
28 K. Yun, D. Lee, H. Kim, and E. Yoon, "Microbead-based bio-assay using quantum dot fluorescence in a microfluidic chip", J. Kor. Sensors Soc., vol. 14, no. 5, pp. 308-312, 2005.   DOI   ScienceOn
29 A. P. Alivisato, "Semiconductor clusters, nanocrystals, and quantum dots", Science, vol. 271, pp. 933-937, 1996.   DOI   ScienceOn
30 X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics", Science, vol. 307, pp. 538-544, 2005.   DOI   ScienceOn