DC Characteristics of P-Channel Metal-Oxide-Semiconductor Field Effect Transistors with $Si_{0.88}Ge_{0.12}(C)$ Heterostructure Channel

  • Choi, Sang-Sik (Department of Semiconductor Science and Technology, Semiconductor Physics Research Center, Chonbuk National University) ;
  • Yang, Hyun-Duk (Department of Semiconductor Science and Technology, Semiconductor Physics Research Center, Chonbuk National University) ;
  • Han, Tae-Hyun (Tachyonics) ;
  • Cho, Deok-Ho (Tachyonics) ;
  • Kim, Jea-Yeon (Department of Semiconductor Science and Technology, Semiconductor Physics Research Center, Chonbuk National University) ;
  • Shim, Kyu-Hwan (Department of Semiconductor Science and Technology, Semiconductor Physics Research Center, Chonbuk National University)
  • Published : 2006.06.30

Abstract

Electrical properties of $Si_{0.88}Ge_{0.12}(C)$ p-MOSFETs have been exploited in an effort to investigate $Si_{0.88}Ge_{0.12}(C)$ channel structures designed especially to suppress diffusion of dopants during epitaxial growth and subsequent fabrication processes. The incorporation of 0.1 percent of carbon in $Si_{0.88}Ge_{0.12}$ channel layer could accomodate stress due to lattice mismatch and adjust bandgap energy slightly, but resulted in deteriorated current-voltage properties in a broad range of operation conditions with depressed gain, high subthreshold current level and many weak breakdown electric field in gateoxide. $Si_{0.88}Ge_{0.12}(C)$ channel structures with boron delta-doping represented increased conductance and feasible use of modulation doped device of $Si_{0.88}Ge_{0.12}(C)$ heterostructures.

Keywords

References

  1. J. D. Plummer and P. B. Griffin, 'Material and process limits in silicon VLSI technology,' Proceedings of the IEEE, Vo1.89, issue 3, pp.240-258, March 2001 https://doi.org/10.1109/5.915373
  2. T. Ohmi, S. Sugawa, K. Kotani, M. Hirayama and A. Morimoto, 'New paradigm of silicon technology,' Proceedings of the IEEE, Vol. 89, issue 3, pp.394-412, March 2001 https://doi.org/10.1109/5.915381
  3. T. Sugii, 'High-performance bulk CMOS technology for 65/45 nm nodes,' Solid-State Electronics, Vo1.50, issue 1, pp.2-9, January 2006 https://doi.org/10.1016/j.sse.2005.10.047
  4. D. K. Schroder and J. A. Babcock, 'Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing,' Journal of Applied Physics, Vo1.94, pp.l-18, July 2003 https://doi.org/10.1063/1.1567461
  5. K. H. Shim, Y. J. Song and J. Y. Kang, 'High-Performance SiGe pHMOS usin reduced-pressure CVD,' Solid State Technology, pp.5l-58, March 2004
  6. S. H. Olsen, K. S. K. Kwa, S. Chattopadhyay and A. G. ONeill, 'Design, fabrication and characterisation of strined Si/SiGe MOS transistors,' IEE Proceedings Circuits, Devices & System, Vol.151, issue 5,pp.431-437, October 2004 https://doi.org/10.1049/ip-cds:20040995
  7. T. Mizuno, N. Sugiyama, T. Tezuka, Y. Moriyama, S. Nakaharai and S. Takagi, 'High-speed source-heterojunction-MOS-transistor (SHOT) utilizing high-velocity electron injection,' IEEE Transactions on Electron Devices, Vol 52, issue 12, pp.2690-2696, December 2005 https://doi.org/10.1109/TED.2005.859591
  8. H. C. Lee, G. Y. Yeom, Y. J. Lee, J. K. Shim, S. I. Baik and Y. W. Kim, 'Structural and Electrical Analysis of Silicon Thin Films Deposited byTransformer-Coupled- Plasma Chemical-Vapor Deposition,' Journal of the Korean Physical Society, Vol 47, issue 2, pp.277-282, August 2005
  9. S. Watanabe, 'Multi-Lorentzian Model and 1/f noise spectra,' Journal of the Korean Physical Society, Vo1.46, issue 3, pp.646-650, March 2005
  10. Y. J. Song, J. W. Lim, B. Mheen, S. H. Kim, H. C. Bae, J. Y. Kang, J. H. Kim, J. I. Song, K. W. Park and K. H. Shim, '1/f noise in Si/sub 0.8/Ge/sub 0.2/ pMOSFETs under Fowler-Nordheim stress,' IEEE Transactions on Electron Devices, Vol.50, issue 4,pp.1152-1156,April 2003 https://doi.org/10.1109/TED.2003.812477
  11. E. J. Quinones, S. John, S. K. Ray and S. K. Banerjee, 'Design, fabrication, and analysis of SiGeC heterojunction PMOSFETs,' IEEE Transactions on Electron Devices, Vo1.47, issue 9, pp.17l5-1725, September 2000 https://doi.org/10.1109/16.861582
  12. Y. J. Song, S. H. Kim, N. E. Lee, J. Y. Kang, J. I. Song and K. H. Shim, 'A low-temperature and high-quality radical-assisted oxidation process utilizing a remote ultraviolet ozone source for high-performance SiGe/Si MOSFETs,' Semiconductor Science and Technology, Vol.19, issue 7, pp.792-797,July 2004 https://doi.org/10.1088/0268-1242/19/7/002
  13. S. Ariyoshi, S. Takeuchi, O. Nakatsuka, A. Sakai, S. Zaima and Y. Yasuda, 'Influence of $Si_{1-x}Ge_x$interlayer on the initial growth of SiGeC on Si(1 0 0),' Applied Surface Science, Vol.224, pp.117-121, March 2004 https://doi.org/10.1016/j.apsusc.2003.12.023
  14. R. A. Pucel and C. F. Krumm, 'Simple method of measuring drift mobility in thin semiconductor films,' Electronics Letters, Vo1.12, issue 10, pp.240-242, May 1976 https://doi.org/10.1049/el:19760186
  15. S. C. Sun and J. D. Plummer, 'Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces,' IEEE Trans. Electron Devices, Vo1.27, issue 8, pp.1497-l508, August 1999
  16. J. Hallstedt, M. Blomqvist, P. O. A. Persson, L. Hultman, and H. H. Radamson, 'The effect of carbon and germanium on phase transformation of nickel on $Si_{1-x-y}Ge_xC_y$epitaxial layers,' Journal of Applied Physics, Vo1.95, issue 5, pp.2397-2402, March 2002 https://doi.org/10.1063/1.1645996