• Title/Summary/Keyword: Gate characteristics

Search Result 1,735, Processing Time 0.027 seconds

Performance of Non Punch-Through Trench Gate Field-Stop IGBT for Power Control System and Automotive Application

  • Kang, Ey Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.50-55
    • /
    • 2016
  • In this paper, we have analyzed the electrical characteristics of 1200V trench gate field stop IGBT and have compared to NPT planar type IGBT and NPT planar field stop IGBT. As a result of analyzing, we obtained superior electrical characteristics of trench gate field stop IGBT than conventional IGBT. To begin with, the breakdown voltage characteristic was showed 1,460 V and on state voltage drop was showed 0.7 V. We obtained 3.5 V threshold voltage, too. To use these results, we have extracted optimal design and process parameter and designed trench gate field stop IGBT. The designed trench gate IGBT will use to inverter of renewable energy and automotive industry.

A Study on Electrical Characteristics Improvement on Field Stop IGBT Using Trench Gate Structure (Trench Gate를 이용한 Field Stop IGBT의 전기적 특성 분석에 관한 연구)

  • Nam, Tae-Jin;Jung, Eun-Sik;Chung, Hun-Suk;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.266-269
    • /
    • 2012
  • The most recently IGBT (insulated gate bipolar mode transistor) devices are in the most current conduction capable devices and designed to the big switching power device. Use this number of the devices are need to high voltage and low on-state voltage drop. And then in this paper design of field stop IGBT is insert N buffer layer structure in NPT planar IGBT and optimization design of field stop IGBT and trench field stop IGBT, both devices have a comparative analysis and reflection of the electrical characteristics. As a simulation result, trench field stop IGBT is electrical characteristics better than field stop IGBT.

Analysis of the electrical characteristics for SiGe pMOSFET by the carrier transport models (캐리어 전송 모델에 따른 SiGe pMOSFET의 전기적 특성분석)

  • 김영동;고석웅;정학기;허창우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.773-776
    • /
    • 2003
  • In this paper, we have designed the p-type SiGe MOSFET and analyzed the electrical characteristics. When the gate voltage is biased to -1.5V, the threshold voltage values are -0.97V and -1.15V at room temperature and 77K, respectively. We know that the operating characteristics of SiGe MOSFET is superior to the basic Si MOSFET which the threshold voltage is -1.36V.

  • PDF

Electrical Characteristics of the Triac according to the Gate Diffusion Time (게이트 확산 시간에 따른 트라이액의 전기적 특성 연구)

  • Hong, N.P.;Choi, D.J.;Lee, T.S.;Choi, B.H.;Kim, T.H.;Hong, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1606-1608
    • /
    • 2002
  • The triac is a bidirectional triode with blocking and conducting characteristics used in motor control or heater power control. This greatly simplifies the circuits required for the control of the full wave AC Power by reducing the number of power handling components and by reducing the size and complexity of the gate control circuit.[3] In this paper, We can understand measurement results of analysis which have been made on the electrical characteristics of triac with gate diffusion time for the gate area.

  • PDF

Variation of Water Level on the Upstream Gauging Station by Operation of the Drainage Sluice Gate of Geumgang Estuary Dam (금강하구둑 배수갑문 조작에 의한 상류수역의 수위변동)

  • Park, Seung-Ki
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.15-24
    • /
    • 2005
  • The normalization on the characteristics of water level change at the upstream gauging station was attempted according to the operation of drainage sluice gate of the Geumgang estuary dam. The characteristics were normalized by the analysis of water level change and by the linear-regression of the water level data measured at the inner station of Geumgang estuary dam and upstream gauging station. The results of normalization may be referred to the management of Geumgang estuary lake, the operation of pumping and drainage stations in the shore of the lake. The mean response time of water level change on Ibpo, Ganggyeong and Gyuam water level station were 39,81 and 160 minutes, when sluice gate was opened respectively. The mean velocity of surface wave, the mean displacement of water level change, the mean time of water level change and the mean rate of water level change varied largely depending on the location of gauging station and the characteristics of stream section of the water level gauging station.

Analysis of Two-step programming characteristics of the flash EEPROM's (Flash EEPROM의 two-step 프로그램 특성 분석)

  • 이재호;김병일;박근형;김남수;이형규
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.9
    • /
    • pp.56-63
    • /
    • 1997
  • There generally exists a large variation in the thereshold voltages of the flash EEPROM cells after they are erased by using th fowler-nordheim tunneling, thereby getting some cells to be overeased. If the overerased cells are programmed with the conventional one-step programming scheme where an 12-13V pulse with the duration of 100.mu.S is applie don the control gate for the programming, they can suffer from the significant degradation of the reliability of the gate oxide. A two-step programming schem, where an 8/12 V pulse with a duration of 50.mu.S for each voltage is applied on the control gate for the programming, has been studied to solve the problem. The experimental results hav eshown that there is little difference in the programming characteristics between those two schemes, whereas the degradation of the gate oxide due to the programming can be significantly reduced with the two-step programming scheme compared to that with the one-step programming scheme. This is possibly because the positive charge stored in the floating gate of the overerased cells is compensate dwith the electrons injected into the floating gate while the 8V pulse is applied on the control gate, which leaves the overerased cells in the normally erased state after the duration of the 8V pulse.

  • PDF

Electrical Characteristics of InAlAs/InGaAs/InAlAs Pseudomorphic High Electron Mobility Transistors under Sub-Bandgap Photonic Excitation

  • Kim, H.T.;Kim, D.M.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.3
    • /
    • pp.145-152
    • /
    • 2003
  • Electrical gate and drain characteristics of double heterostructure InAlAs/InGaAs pseudomorphic HEMTs have been investigated under sub-bandgap photonic excitation ($hv). Drain $(V_{DS})-,{\;}gate($V_{DS})-$, and optical power($P_{opt}$)-dependent variation of the abnormal gate leakage current and associated physical mechanisms in the PHEMTs have been characterized. Peak gate voltage ($V_{GS,P}$) and the onset voltage for the impact ionization ($V_{GS.II}$) have been extracted and empirical model for their dependence on the $V_{DS}$ and $P_{opt} have been proposed. Anomalous gate and drain current, both under dark and under sub-bandgap photonic excitation, have been modeled as a parallel connection of high performance PHEMT with a poor satellite FET as a parasitic channel. Sub-bandgap photonic characterization, as a function of the optical power with $h\nu=0.799eV$, has been comparatively combined with those under dark condition for characterizing the bell-shaped negative humps in the gate current and subthreshold drain leakage under a large drain bias.

Pentacene Thin Film Transistors with Various Polymer Gate Insulators

  • Kim, Jae-Kyoung;Kim, Jung-Min;Yoon, Tae-Sik;Lee, Hyun-Ho;Jeon, D.;Kim, Yong-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.118-122
    • /
    • 2009
  • Organic thin film transistors with a pentacene active layer and various polymer gate insulators were fabricated and their performances were investigated. Characteristics of pentacene thin film transistors on different polymer substrates were investigated using an atomic force microscope (AFM) and x-ray diffraction (XRD). The pentacene thin films were deposited by thermal evaporation on the gate insulators of various polymers. Hexamethyldisilazane (HMDS), polyvinyl acetate (PVA) and polymethyl methacrylate (PMMA) were fabricated as the gate insulator where a pentacene layer was deposited at 40, 55, 70, 85, 100 oC. Pentacene thin films on PMMA showed the largest grain size and least trap concentration. In addition, pentacene TFTs of top-contact geometry are compared with PMMA and $SiO_2$ as gate insulators, respectively. We also fabricated pentacene TFT with Poly (3, 4-ethylenedioxythiophene)-Polysturene Sulfonate (PEDOT:PSS) electrode by inkjet printing method. The physical and electrical characteristics of each gate insulator were tested and analyzed by AFM and I-V measurement. It was found that the performance of TFT was mainly determined by morphology of pentacene rather than the physical or chemical structure of the polymer gate insulator

Temperature reliability analysis according to the gate dielectric material of 4H-SiC UMOSFET (4H-SiC UMOSFET의 gate dielectric 물질에 따른 온도 신뢰성 분석)

  • Jung, Hang-San;Heo, Dong-Beom;Kim, Kwang-Su
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • In this paper, a 4H-SiC UMOSFET was studied which is suitable for high voltage and high current applications. In general, SiO2 is a material most commonly used as a gate dielectric material in SiC MOSFETs. However, since the dielectric constant value is 2.5 times lower than 4H-SiC, it suffers a high electric field and has poor characteristics in the SiO2/SiC junction. Therefore, the static characteristics of a device with high-k material as a gate dielectric and a device with SiO2 were compared using TCAD simulation. The results show BV decreased, VTH decreased, gm increased, and Ron decreased. Especially when the temperature is 300K, the Ron of Al2O3 and HfO2 decreases by 66.29% and 69.49%. and at 600K, Ron decreases by 39.71% and 49.88%, respectively. Thus, Al2O3 and HfO2 are suitable as gate dielectric materials for high voltage SiC MOSFET.

Electrical Characteristics of the Dual Gate Emitter Switched Thyristor (Dual Gate Emitter Switched Thyristor의 전기적 특성)

  • Kim, Nam-Soo;Lee, Eung-Rae;Cui, Zhi-Yuan;Kim, Yeong-Seuk;Kim, Kyoung-Won;Ju, Byeong-Kwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.401-406
    • /
    • 2005
  • Two dimensional MEDICI simulator is used to study the electrical characteristics of Dual Gate Emitter Switched Thyristor. The simulation is done in terms of the current-voltage characteristics with the variations of p-base impurity concentrations and current flow. Compared with the other power devices such as MOS Controlled Cascade Thyristor(MCCT), Conventional Emitter Switched Thyristor(C-EST) and Dual Channel Emitter Switched Thyristor(DC-EST), Dual Gate Emitter Switched Thyristor(DG-EST) shows to have tile better electrical characteristics, which is the high latch-up current density and low forward voltage-drop. The proposed DG-EST which has a non-planer u-base structure under the floating N+ emitter indicates to have the better characteristics of latch-up current and breakover voltage in spite of the same turn-off characteristics.