DOI QR코드

DOI QR Code

Temperature reliability analysis according to the gate dielectric material of 4H-SiC UMOSFET

4H-SiC UMOSFET의 gate dielectric 물질에 따른 온도 신뢰성 분석

  • Jung, Hang-San (Dept. of Electronics Engineering, Sogang University) ;
  • Heo, Dong-Beom (Dept. of Electronics Engineering, Sogang University) ;
  • Kim, Kwang-Su (Dept. of Electronics Engineering, Sogang University)
  • Received : 2021.02.10
  • Accepted : 2021.03.24
  • Published : 2021.03.31

Abstract

In this paper, a 4H-SiC UMOSFET was studied which is suitable for high voltage and high current applications. In general, SiO2 is a material most commonly used as a gate dielectric material in SiC MOSFETs. However, since the dielectric constant value is 2.5 times lower than 4H-SiC, it suffers a high electric field and has poor characteristics in the SiO2/SiC junction. Therefore, the static characteristics of a device with high-k material as a gate dielectric and a device with SiO2 were compared using TCAD simulation. The results show BV decreased, VTH decreased, gm increased, and Ron decreased. Especially when the temperature is 300K, the Ron of Al2O3 and HfO2 decreases by 66.29% and 69.49%. and at 600K, Ron decreases by 39.71% and 49.88%, respectively. Thus, Al2O3 and HfO2 are suitable as gate dielectric materials for high voltage SiC MOSFET.

본 논문에서는 고전압, 고전류 동작에 적합한 4H-SiC UMOSFET에 대해서 연구하였다. 일반적으로 SiO2는 SiC MOSFET에서 gate dielectric으로 가장 많이 사용되는 물질이다. 하지만 4H-SiC보다 유전 상수 값이 2.5배 낮아서 높은 전계를 갖게 되므로 SiO2/SiC 접합 부분에서 열악한 특성을 갖는다. 따라서 high-k 물질을 gate dielectric으로 적용한 소자를 SiO2를 적용한 소자와 TCAD 시뮬레이션을 통해 전기적 특성을 비교하였다. 그 결과 BV 감소, VTH 감소, gm 증가, Ron 감소를 확인하였다. 특히 온도가 300K일 때, Al2O3와 HfO2의 Ron은 66.29%, 69.49%가 감소하였으며 600K일 때도 39.71%, 49.88%가 감소하였다. 따라서 Al2O3와 HfO2가 고전압 SiC MOSFET의 gate dielectric 물질로써 적합함을 확인하였다.

Keywords

References

  1. Dr. Peter Friedrichs Prof. Dr. Tsunenobu Kimoto Prof. Dr. Lothar Ley Dr. Gerhard Pensl, "Silicon Carbide: Volume 2: Power Devices and Sensors," Wiley VCH Verlag GmbH & Co. KGaA, Vol.2 2011. DOI: 10.1002/9783527629077
  2. Wolfgang Justus ChoykeH. MatsunamiG. Pensl, Silicon Carbide: Recent Major Advances. Springer Science & Business Media, 2004. DOI: 10.1007/978-3-642-18870-1
  3. Muhammad Nawaz, "On the Evaluation of Gate Dielectrics for 4H-SiC Based Power MOSFETs," Active and Passive Electronic Components, vol.2015, no.651527, 2015. DOI: 10.1155/2015/651527
  4. S. Wirths et al., "Threshold Voltage Stability Study on Power SiC MOSFETs Using High-k Dielectrics," in PCIM Europe digital days 2020; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Germany, pp. 1-8, 2020.
  5. Muhammad Usman, Sethu Saveda Suvanam, M.K. Linnarsson, Anders Hallen, "Improving the quality of Al2O3/4H-SiC interface for device applications," Materials Science in Semiconductor Processing, vol.81, pp.118-121, 2018. DOI: 10.1016/j.mssp.2018.02.036.
  6. F. Arith, J. Urresti, K. Vasilevskiy, S. Olsen, N. Wright and A. O'Neill, "Increased Mobility in Enhancement Mode 4H-SiC MOSFET Using a Thin SiO2 / Al2O3 Gate Stack," IEEE Electron Device Letters, vol.39, no.4, pp. 564-567, 2018. DOI: 10.1109/LED.2018.2807620.
  7. Carey M. Tanner, Jongwoo Choi, and Jane P. Chang, "Electronic structure and band alignment at the HfO2∕4H-SiC interface," Journal of Applied Physics, vol.101, no.3, 2007. DOI: 10.1063/1.2432402
  8. D. Bharti and A. Islam, "Performance improvement in 4H-SiC UMOSFET with HfO2/Al2O3 gate dielectric stack," in 2017 Devices for Integrated Circuit (DevIC), Kalyani, pp.804-807, 2017. DOI: 10.1109/DEVIC.2017.8074064.
  9. Takuji Hosoi, Shuji Azumo, Yusaku Kashiwagi, Shigetoshi Hosaka, Ryota Nakamura, Shuhei Mitani, Yuki Nakano, Hirokazu Asahara, Takashi Nakamura, Tsunenobu Kimoto, Takayoshi Shimura, and Heiji Watanabe, "Performance and Reliability Improvement in SiC Power MOSFETs by Implementing AlON High-k Gate Dielectrics," 2012 International Electron Devices Meeting, pp.7.4.1-7.4.4, 2012. DOI: 10.1109/IEDM.2012.6478998
  10. K. Y. Cheong et al., "Improved Electronic Performance of HfO2/SiO2 Stacking Gate Dielectric on 4H SiC," IEEE Transactions on Electron Devices, vol.54, no.12, pp.3409-3413, 2007. DOI: 10.1109/TED.2007.908545
  11. W. Zhou, X. Zhong and K. Sheng, "High Temperature Stability and the Performance Degradation of SiC MOSFETs," IEEE Transactions on Power Electronics, vol.29, no.5, pp.2329-2337, 2014. DOI: 10.1109/TPEL.2013.2283509
  12. L. C. Yu, G. T. Dunne, K. S. Matocha, K. P. Cheung, J. S. Suehle and K. Sheng, "Reliability Issues of SiC MOSFETs: A Technology for High-Temperature Environments," IEEE Transactions on Device and Materials Reliability, vol.10, no.4, pp.418-426, 2010. DOI: 10.1109/TDMR.2010.2077295
  13. T. Aichinger, G. Rescher, and G. Pobegen, "Threshold voltage peculiarities and bias temperature instabilities of SiC MOSFETs," Microelectronics Reliability, vol.80, pp.68-78, 2018. DOI: 10.1013/j.microrel.2017.11.020
  14. T. Funaki, J. C. Balda, J. Junghans, A. S. Kashyap, H. A. Mantooth, F. Barlow, T. Kimoto, and T. Hikihara, "Power Conversion with SiC devices at extremely high ambient temperatures," IEEE Transactions on Power electronics, vol.22, no.4, pp.1321-1329, 2007. DOI: 10.1109/TPEL.2007.900561
  15. B Jayant Baliga, Silicon Carbide Power Devices. World Scientific, 2006. DOI: 10.1142/5986
  16. B. Jayant Baliga, Fundamentals of Power Semiconductor Devices. Springer, 2008. DOI: 10.1007/978-3-319-93988-9
  17. Koo YS, Kang MS, Choi C, An C, "A Study on the Temperature Characteristics of Power LDMOSFETs Having Various Drift Region Lengths," Journal of the Korean Physical Society, vol.39, pp.352-355, 2001. DOI: 10.7471/ikeee.2019.23.1.22
  18. Md. Hasanuzzaman, Syed K. Islam, Leon M. Tolbert, "Effects of temperature variation (300-600 K) in MOSFET modeling in 6H-silicon carbide," Solid-State Electronics, vol.48, no.1, pp. 125-132, 2004. DOI: 10.1016/S0038-1101(03)00293-4.
  19. B. Jayant Baliga, "Power semiconductor device figure of merit for high-frequency applications," IEEE Electron Device Letters, vol.10, no.10, pp. 455-457, 1989. DOI: 10.1109/55.43098