• Title/Summary/Keyword: Fe thin film

Search Result 635, Processing Time 0.025 seconds

Effect of Anode Voltage on Diamond-like Carbon Thin Film Using Linear Ion Source (Linear Ion Source를 이용한 Anode Voltage 변화에 따른 DLC 박막특성)

  • Kim, Wang-Ryeol;Jung, Uoo-Chang;Jo, Hyung-Ho;Park, Min-Suk;Chung, Won-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.4
    • /
    • pp.179-185
    • /
    • 2009
  • Diamond-like carbon(DLC) films were deposited by linear ion source(LIS)-physical vapor deposition method changing the anode voltages from 800 V to 1800 V, and characteristics of the films were investigated using residual stress tester, nano-indentation, micro raman spectroscopy, scratch tester and Field Emission Scanning Electron Microscope(FE-SEM). The results showed that the residual stress and hardness increased with increasing the ion energy up to anode voltage of 1400 V. It was also found that the content of $SP^3$ carbon increased with increasing the anode voltage $SP^3/SP^2$ ratio through investigation of $SP^3/SP^2$ ratio by the micro-raman analysis. From these results, it can be concluded that the physical properties of DLC films such as residual stress and hardness are increased with increasing the anode voltage. These results can be explained that 3-dimensional cross-links between carbon atoms and Dangling bond are enhanced and the internal compressive stress also increased with increasing the anode voltage. The optimal anode voltage is considered to be around 1400 V in these experimental conditions.

Fabrication and Evaluation Properties of Titanium Sintered-body for a Sputtering Target by Spark Plasma Sintering Process (방전플라즈마 소결 공정을 이용한 스퍼터링 타겟용 타이타늄 소결체 제조 및 특성 평가)

  • Lee, Seung-Min;Park, Hyun-Kuk;Youn, Hee-Jun;Yang, Jun-Mo;Woo, Kee-Do;Oh, Ik-Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.845-852
    • /
    • 2011
  • The Spark Plasma Sintering(SPS) method offers a means of fabricating a sintered-body having high density without grain growth through short sintering time and a one-step process. A titanium compact having high density and purity was fabricated by the SPS process. It can be used to fabricate a Ti sputtering target with controlled parameters such as sintering temperature, heating rate, and pressure to establish the optimized processing conditions. The compact/target(?) has a diameter of ${\Phi}150{\times}6.35mm$. The density, purity, phase transformation, and microstructure of the Ti compact were analyzed by Archimedes, ICP, XRD and FE-SEM. A Ti thin-film fabricated on a $Si/SiO_2$ substrate by a sputtering device (SRN-100) was analyzed by XRD, TEM, and SIMS. Density and grain size were up to 99% and below $40{\mu}m$, respectively. The specific resistivity of the optimized Ti target was $8.63{\times}10^{-6}{\Omega}{\cdot}cm$.

Property of Nano-thickness Nickel Silicides with Low Temperature Catalytic CVD (Catalytic CVD 저온공정으로 제조된 나노급 니켈실리사이드의 물성)

  • Choi, Yongyoon;Kim, Kunil;Park, Jongsung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.133-140
    • /
    • 2010
  • 10 nm thick Ni layers were deposited on 200 nm $SiO_2/Si$ substrates using an e-beam evaporator. Then, 60 nm or 20 nm thick ${\alpha}$-Si:H layers were grown at low temperature (<$200^{\circ}C$) by a Catalytic-CVD. NiSi layers were already formed instantaneously during Cat-CVD process regardless of the thickness of the $\alpha$-Si. The resulting changes in sheet resistance, microstructure, phase, chemical composition, and surface roughness with the additional rapid thermal annealing up to $500^{\circ}C$ were examined using a four point probe, HRXRD, FE-SEM, TEM, AES, and SPM, respectively. The sheet resistance of the NiSi layer was 12${\Omega}$/□ regardless of the thickness of the ${\alpha}$-Si and kept stable even after the additional annealing process. The thickness of the NiSi layer was 30 nm with excellent uniformity and the surface roughness was maintained under 2 nm after the annealing. Accordingly, our result implies that the low temperature Cat-CVD process with proposed films stack sequence may have more advantages than the conventional CVD process for nano scale NiSi applications.

UV-cured Polymer Solid Electrolyte Reinforced using a Ceramic-Polymer Composite Layer for Stable Solid-State Li Metal Batteries

  • Hye Min Choi;Su Jin Jun;Jinhong Lee;Myung-Hyun Ryu;Hyeyoung Shin;Kyu-Nam Jung
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.85-95
    • /
    • 2023
  • In recent years, solid-state Li metal batteries (SSLBs) have attracted significant attention as the next-generation batteries with high energy and power densities. However, uncontrolled dendrite growth and the resulting pulverization of Li during repeated plating/stripping processes must be addressed for practical applications. Herein, we report a plastic-crystal-based polymer/ceramic composite solid electrolyte (PCCE) to resolve these issues. To fabricate the one-side ceramic-incorporated PCCE (CI-PCCE) film, a mixed precursor solution comprising plastic-crystal-based polymer (succinonitrile, SN) with garnet-structured ceramic (Li7La3Zr2O12, LLZO) particles was infused into a thin cellulose membrane, which was used as a mechanical framework, and subsequently solidified by using UV-irradiation. The CI-PCCE exhibited good flexibility and a high room-temperature ionic conductivity of over 10-3 S cm-1. The Li symmetric cell assembled with CI-PCCE provided enhanced durability against Li dendrite penetration through the solid electrolyte (SE) layer than those with LLZO-free PCCEs and exhibited long-term cycling stability (over 200 h) for Li plating/stripping. The enhanced Li+ transference number and lower interfacial resistance of CI-PCCE indicate that the ceramic-polymer composite layer in contact with the Li anode enabled the uniform distribution of Li+ flux at the interface between the Li metal and CI-PCCE, thereby promoting uniform Li plating/stripping. Consequently, the Li//LiFePO4 (LFP) full cell constructed with CI-PCCE demonstrated superior rate capability (~120 mAh g-1 at 2 C) and stable cycle performance (80% after 100 cycles) than those with ceramic-free PCCE.

Improvement of Calcium Phosphate Forming Ability of Titanium Implant by Thermal Oxidation Method (열산화법에 의한 티타늄 임플란트의 인산칼슘 결정의 형성 능력 증진)

  • Hwang, Kyu-Seog;An, Jun-Hyung;Lee, Seon-Ok;Yun, Yeon-Hum;Kang, Bo-An;Oh, Jeong-Sun;Kim, Sang-Bok
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.460-466
    • /
    • 2002
  • Titanium oxide film was deposited on the commercially pure titanium (cp-Ti) by thermal oxidation method for its medical application. The cp-Ti disks were cleaned and then heat-treated at the temperatures of 500, 550, 600, 650, and 700${\circ}C$, respectively, for 10 min in air or Ar. To test the ability of calcium phosphate formation, the specimens were immersed in the Eagle's minimum essential medium solution at 36.5${\circ}C$ for 15 days. The morphology and chemical composition of the surfaces before and after soaking were analyzed by using FE-SEM and EDS. The in-vitro formation of carbonated calcium phosphate on the thin films containing nano-sized $TiO_2$ crystals was identified.

Electrochemical treatment of wastewater using boron doped diamond electrode by metal inter layer

  • KIM, Seohan;YOU, Miyoung;SONG, Pungkeun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.251-251
    • /
    • 2016
  • For several decades, industrial processes consume a huge amount of raw water for various objects that consequently results in the generation of large amounts of wastewater. Wastewaters are consisting of complex mixture of different inorganic and organic compounds and some of them can be toxic, hazardous and hard to degrade. These effluents are mainly treated by conventional technologies such are aerobic and anaerobic treatment and chemical coagulation. But, these processes are not suitable for eliminating all hazardous chemical compounds form wastewater and generate a large amount of toxic sludge. Therefore, other processes have been studied and applied together with these techniques to enhance purification results. These include photocatalysis, absorption, advanced oxidation processes, and ozonation, but also have their own drawbacks. In recent years, electrochemical techniques have received attention as wastewater treatment process that could be show higher purification results. Among them, boron doped diamond (BDD) attract attention as electrochemical electrode due to good chemical and electrochemical stability, long lifetime and wide potential window that necessary properties for anode electrode. So, there are many researches about high quality BDD on Nb, Ta, W and Si substrates, but, their application in effluents treatment is not suitable due to high cost of metal and low conductivity of Si. To solve these problems, Ti has been candidate as substrate in consideration of cost and property. But there are adhesion issues that must be overcome to apply Ti as BDD substrate. Al, Cu, Ti and Nb thin films were deposited on Ti substrate to improve adhesion between substrate and BDD thin film. In this paper, BDD films were deposited by hot filament chemical vapor deposition (HF-CVD) method. Prior to deposition, cleaning processes were conducted in acetone, ethanol, and isopropyl alcohol (IPA) using sonification machine for 7 min, respectively. And metal layer with the thickness of 200 nm were deposited by DC magnetron sputtering (DCMS). To analyze microstructure X-ray diffraction (XRD, Bruker gads) and field emission scanning electron microscopy (FE-SEM, Hitachi) were used. It is confirmed that metal layer was effective to adhesion property and improved electrode property. Electrochemical measurements were carried out in a three electrode electrochemical cell containing a 0.5 % H2SO4 in deionized water. As a result, it is confirmed that metal inter layer heavily effect on BDD property by improving adhesion property due to suppressing formation of titanium carbide.

  • PDF

The Study of Near-field Scanning Microwave Microscope for the Nondestructive Detection System (비파괴 측정을 위한 근접장 마이크로파 현미경 연구)

  • Kim, Joo-Young;Kim, Song-Hui;Yoo, Hyun-Jun;Yang, Jong-Il;Yoo, Hyung-Keun;Yu, Kyong-Son;Kim, Seung-Wan;Lee, Kie-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.508-517
    • /
    • 2004
  • We described a near-field scanning microwave microscope which uses a high-quality dielectric resonator with a tunable screw. The operating frequency is f=4.5 5GHz. The probe tip is mounted in a cylindrical resonant cavity coupled to a dielectric resonator We developed a hybrid tip combining a reduced length of the tapered part with a small apex. In order to understand the function of the probe, we fabricated three different tips using a conventional chemical etching technique and observed three different NSMM images for patterened Cr films on glass substrates. We measured the reflection coefficient of different metal thin film samples with the same thickness of 300m and compared with theoretical impedance respectly. By tuning the tunable screw coming through the top cover, we could improve sensitivity, signal-to-noise ratio, and spatial resolution to better than $1{\mu}m$. To demonstrate the ability of local microwave characterization, the surface resistance of metallic thin films has been mapped.

Characteristics of Memory Windows of MFMIS Gate Structures (MFMIS 게이트 구조에서의 메모리 윈도우 특성)

  • Park, Jun-Woong;Kim, Ik-Soo;Shim, Sun-Il;Youm, Min-Soo;Kim, Yong-Tae;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.319-322
    • /
    • 2003
  • To match the charge induced by the insulators $CeO_2$ with the remanent polarization of ferro electric SBT thin films, areas of Pt/SBT/Pt (MFM) and those of $Pt/CeO_2/Si$ (MIS) capacitors were ind ependently designed. The area $S_M$ of MIS capacitors to the area $S_F$ of MFM capacitors were varied from 1 to 10, 15, and 20. Top electrode Pt and SBT layers were etched with for various area ratios of $S_M\;/\;S_F$. Bottom electrode Pt and $CeO_2$ layers were respectively deposited by do and rf sputtering in-situ process. SBT thin film were prepared by the metal orgnic decomposition (MOD) technique. $Pt(100nm)/SBT(350nm)/Pt(300nm)/CeO_2(40nm)/p-Si$ (MFMIS) gate structures have been fabricated with the various $S_M\;/\;S_F$ ratios using inductively coupled plasma reactive ion etching (ICP-RIE). The leakage current density of MFMIS gate structures were improved to $6.32{\times}10^{-7}\;A/cm^2$ at the applied gate voltage of 10 V. It is shown that in the memory window increase with the area ratio $S_M\;/\;S_F$ of the MFMIS structures and a larger memory window of 3 V can be obtained for a voltage sweep of ${\pm}9\;V$ for MFMIS structures with an area ratio $S_M\;/\;S_F\;=\;6$ than that of 0.9 V of MFS at the same applied voltage. The maximum memory windows of MFMIS structures were 2.28 V, 3.35 V, and 3.7 V with the are a ratios 1, 2, and 6 at the applied gate voltage of 11 V, respectively. It is concluded that ferroelectric gate capacitors of MFMIS are good candidates for nondestructive readout-nonvolatile memories.

  • PDF

First Principles Calculations on Magnetism of CrPt3(001) Thin Films (CrPt3(001) 박막의 자성: 제일원리계산)

  • Jeong, Tae Sung;Jekal, Soyoung;Rhim, S.H.;Hong, S.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.2
    • /
    • pp.41-48
    • /
    • 2017
  • Recent study shows that ordered alloy of $L1_2$ $XPt_3$ (M = V, Cr, Mn, Co, and Fe) exhibits various magnetic phases such as ferromagnetic-to-antiferromagnetic transition at the $MnPt_3$ surface. Moreover, it has been argued that $CrPt_3$, in particular, possess large magnetocrystalline anisotropy and Kerr rotation with possible violation of Hund's rule. As such, we extend our work to thickness dependence of the magnetic structure of $CrPt_3$ thin film using density functional theory. Magnetic ground state of the bulk $CrPt_3$ turns out to be ferromagnetic (FM), where other magnetic phases such as A-type (A-AF), C-type (C-AF), and G-type antiferromagnetic (G-AF) state have higher total energies than FM by 0.517, 0.591, and 0.183 eV, respectively, and magnetic moments of Cr in bulk are respectively 2.807 (FM), 2.805 (A-AF), 2.794 (C-AF) and $2.869_{{\mu}_B}$ (G-AF). We extend our study to $CrPt_3$(001) thin films with CrPt-and Pt-termination. The thickness and surface-termination dependences of magnetism are investigated for 3-9 monolayers (ML), where different magnetic phases from bulk emerge: C-AF for CrPt-terminated 3 ML and G-AF for Pt-terminated 5 ML have energy difference relative to FM by 8 and 54 meV, respectively. Furthermore, thickness- and surface-termination-dependent magnetocrystalline anisotropies of the $CrPt_3$(001) films are discussed.

New fabrication of CIGS crystals growth by a HVT method (새로운 HVT 성장방법을 이용한 CIGS 결정성장)

  • Lee, Gang-Seok;Jeon, Hun-Soo;Lee, Ah-Reum;Jung, Se-Gyo;Bae, Seon-Min;Jo, Dong-Wan;Ok, Jin-Eun;Kim, Kyung-Hwa;Yang, Min;Yi, Sam-Nyeong;Ahn, Hyung-Soo;Bae, Jong-Seong;Ha, Hong-Ju
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.3
    • /
    • pp.107-112
    • /
    • 2010
  • The Cu$(In_{1-x}Ga_x)Se_2$ is the absorber material for thin film solar cell with high absorption coefficient of $1{\times}10^5cm^{-1}$. In the case of CIGS, the movable energy band gap from $CuInSe_2$ (1.00 eV) to $CuGaSe_2$ (1.68 eV) can be acquired while controlling Ga contain ratio. Generally, the co-evaporator method have used for development and fabrication of the CIGS absorption layer. However, this method should need many steps and lengthy deposition time with high temperature. For these reasons, in this paper, a new growth method of CIGS layer was attempted to hydride vapor transport (HVT) method. The CIGS mixed-source material reacted for HCl gas in the source zone was deposited on the substrate after transporting to growth zone. c-plane $Al_2O_3$ and undoped GaN were used as substrates for growth. The characteristics of grown samples were measured from SEM and EDS.