DOI QR코드

DOI QR Code

Improvement of Calcium Phosphate Forming Ability of Titanium Implant by Thermal Oxidation Method

열산화법에 의한 티타늄 임플란트의 인산칼슘 결정의 형성 능력 증진

  • Hwang, Kyu-Seog (School of Automotive and Mechanical Engineering and Institute of Manufacturing and Automation System, Nambu University) ;
  • An, Jun-Hyung (School of Automotive and Mechanical Engineering and Institute of Manufacturing and Automation System, Nambu University) ;
  • Lee, Seon-Ok (School of Automotive and Mechanical Engineering and Institute of Manufacturing and Automation System, Nambu University) ;
  • Yun, Yeon-Hum (School of Automotive and Mechanical Engineering and Institute of Manufacturing and Automation System, Nambu University) ;
  • Kang, Bo-An (School of Automotive and Mechanical Engineering and Institute of Manufacturing and Automation System, Nambu University) ;
  • Oh, Jeong-Sun (Department of Chemistry, College of Natural Science, Chosun University) ;
  • Kim, Sang-Bok (School of Automotive and Mechanical Engineering and Institute of Manufacturing and Automation System, Nambu University)
  • 황규석 (남부대학교 자동차기계공학부 생산 자동화 연구소) ;
  • 안준형 (남부대학교 자동차기계공학부 생산 자동화 연구소) ;
  • 이선옥 (남부대학교 자동차기계공학부 생산 자동화 연구소) ;
  • 윤연흠 (남부대학교 자동차기계공학부 생산 자동화 연구소) ;
  • 강보안 (남부대학교 자동차기계공학부 생산 자동화 연구소) ;
  • 오정선 (조선대학교 화학과) ;
  • 김상복 (남부대학교 자동차기계공학부 생산 자동화 연구소)
  • Published : 2002.01.01

Abstract

Titanium oxide film was deposited on the commercially pure titanium (cp-Ti) by thermal oxidation method for its medical application. The cp-Ti disks were cleaned and then heat-treated at the temperatures of 500, 550, 600, 650, and 700${\circ}C$, respectively, for 10 min in air or Ar. To test the ability of calcium phosphate formation, the specimens were immersed in the Eagle's minimum essential medium solution at 36.5${\circ}C$ for 15 days. The morphology and chemical composition of the surfaces before and after soaking were analyzed by using FE-SEM and EDS. The in-vitro formation of carbonated calcium phosphate on the thin films containing nano-sized $TiO_2$ crystals was identified.

티타늄 임플란트의 표면을 열산화법을 이용하여 티타늄의 표면 위에 생체활성을 갖는 $TiO_2$ 박막을 생성시켜 다양한 의료분야의 응용 가능성을 검토하였다. 시판되고 있는 순수한 티타늄 디스크를 세척 공정을 거친 후, 공기와 아르곤 분위기에서 500, 550, 600, 650, 700${\circ}C$의 온도로 10분간 각각 열산화 처리를 실시하였다. 열처리된 시편의 인산칼슘 결정의 형성 능력을 시험하기 위하여 36.5${\circ}C$의 Eagle's minimum essential medium 용액에서 15일 동안 침적시험을 행하였다. 침적하기 전과 후의 시편의 표면 형상과 표면 조성을 Field Emission-Scanning Electron Microscopy(FE-SEM)와 Energy Dispersive X-ray Spectrometry(EDS)로 각각 분석하였다. In vitro 시험에서 미세한 $TiO_2$ 결정이 생성된 박막의 표면에는 탄소가 함유된 인산칼슘 결정이 생성됨을 확인하였다.

Keywords

References

  1. T. Albrektsson, P. I. Branemark, H. A. Hansson, B. Kasemo, K. Larsson, I. Lundstrom, D. H. McQueen and R. Skalak, 'The Interface Zone of Inorganic Implants in vivo: Titanium Implants in Bone,' Ann. Biomed. Eng., 11 1-27 (1983) https://doi.org/10.1007/BF02363944
  2. D. F. Williams, 'Titanium and Titanium Alloys,' in Bio-compatibility of Clinic Implant Materials, D. F. Williams (Ed.), CRC press, Boca Raton, Florida, USA, 9-44 (1981)
  3. R. Z. LeGeros and R. G. Craig, 'Strategies to Effect Bone Remodeling: Osteointegration,' J. Bone Miner. Res., 8 [suppl. 2] S583-S596 (1993) https://doi.org/10.1002/jbmr.5650081328
  4. S. G. Steinemann, 'Metal Implants and Surface Reactions,' Injury 27 [suppl. 3] SC16-SC22 (1996)
  5. K. Suzuki, K. Aoki and K. Ohya, 'Effects of Surface Roughness of Titanium Implants on Bone Remodeling Activity of Femur in Rabbits,' Bone, 21 507-14 (1997) https://doi.org/10.1016/S8756-3282(97)00204-4
  6. J. J. Jacobs, J. L. Gilbert and R. M. Urban, 'Corrosion of Metal Orthopaedic Implants,' J. Bone Joint Surg. Am., 80 268-82 (1998) https://doi.org/10.2106/00004623-199802000-00015
  7. T. Sawase, K. Hai. K. Yoshida, K. Baba, R. Hatada and M. Atsuta, 'Spectroscopic Studies of Three Osseointegrated Implants,' J. Dent., 26 119-24 (1998) https://doi.org/10.1016/S0300-5712(96)00080-2
  8. B. Kasemo, 'Biocompatibility of Titanium Implants: Sur-face Science Aspects,' J. Prosthetic Dent., 49 832-37 (1983) https://doi.org/10.1016/0022-3913(83)90359-1
  9. P. Ducheyne, P. Bianco, S. Radin and E. Schepers, 'Bio-active Materials: Mechanism and Bioengineering Consid-erations, in Bone-bonding Biomaterials,' P. Ducheyne, T. Kokubo and C. A. van Blitterswijk (Eds.), Leiderdorp, Reed Healthcare Communications, Netherlands 1-12 (1992)
  10. S. A. McNally, J. A. Shepperd, C. V. Mann and J. P. Wal-czak, 'The Results at Nine to Twelve Years of the Use of a Hydroxypatite-coated Femoral Stem,' J. Bone Joint Surg 5r., 82 378-82 (2000) https://doi.org/10.1302/0301-620X.82B3.10114
  11. R. G. Geesink and N. H. Hoefnagels, 'Six-year Results of Hydroxy-apatite Coated Total Hip Replacement,' J. Bone Joint Surg. Br., 77 534-47 (1995)
  12. A. Moroni, S. Toksvig-Larsen, M. C. Maltarello, L. Orienti, S. Stea and S. Giannini, 'A Comparison of Hydroxyapatite-coated, Titanium-coated and Uncoated Tapered Externel-fix-ation Pins,' J. Bone Joint Surg. Am., 80 547-54 (1998) https://doi.org/10.2106/00004623-199804000-00011
  13. A. J. Perry, 'Ion Implantation of Titanium Alloys for Bio-material and other Applications,' Surface Eng., 3 154-60 (1987) https://doi.org/10.1179/sur.1987.3.2.154
  14. A. Piattelli, A. Scarano, M. Piattelli and L. Calabrese. 'Direct Bone Formation on Sand-blasted Titanium Implants:An Experimental Study,' Biomater., 17 1015-18 (1996) https://doi.org/10.1016/0142-9612(96)84677-1
  15. D. M. Brunette, G. S. Kenner and T. R. L. Gould, 'GroovedTitanium Surfaces Orient Growth and Migration of Cellsfrom Human Gingival Explants,' J. Dent. Res., 62 1045-48(1983) https://doi.org/10.1177/00220345830620100701
  16. J. Lausmma, B. Kasemo, H. Mattsson and H. Odelius, 'Mutitechnique Surface Characterization of Oxide Films onElectropolished and Anodically Oxidized Titanium,' Appt.Surf. Sci., 45 189-200 (1990) https://doi.org/10.1016/0169-4332(90)90002-H
  17. H. B. Wen, J. R. de Wijn, F. Z. Cui and K. de Groot, 'Prep-aration of Bioactive Ti6A14V Surfaces by a SimpleMethod,' Biomater., 19 215-21 (1998) https://doi.org/10.1016/S0142-9612(97)00232-9
  18. M. Uchida, H. M. Kim, T. Kokubo and T. Nakamura, 'Compositional and Structural Dependance of Apatite For-mation on Titania Gel in Simulated Body Fluid,' Sixth Wortd Biomaterials, 1308 (2000)
  19. P. Li and K. de Groot, 'Calcium Phosphate Formation within Sol-gel Prepared Titania in vitro and in vivo,' J. Biomed. Mater. Res., 27 1495-500 (1993) https://doi.org/10.1002/jbm.820271205
  20. P. Peltola, M. Ptsi, H. Rahiala, I. Kangasniemi and A. Yli-Urpo, 'Calcium Phosphate Induction by Sol-gel-derivedTitania Coatings on Titanium Substrates in vitro,' J. Biomed. Mater. Res., 41 504-10 (1998) https://doi.org/10.1002/(SICI)1097-4636(19980905)41:3<504::AID-JBM22>3.0.CO;2-G
  21. S. Seok, B. Ahn, K. Choi, T. Suh and Y. Yu, 'The Coating of Photocatalytic TiO2 on Metal and Glass using AluminaSols as a BinderO'n &w-.),' J. Kor. Ceram. Soc., 38 [7] 621-27 (2001).