DOI QR코드

DOI QR Code

New fabrication of CIGS crystals growth by a HVT method

새로운 HVT 성장방법을 이용한 CIGS 결정성장

  • Lee, Gang-Seok (Department of Applied Sciences, Korea Maritime University) ;
  • Jeon, Hun-Soo (Department of Applied Sciences, Korea Maritime University) ;
  • Lee, Ah-Reum (Department of Applied Sciences, Korea Maritime University) ;
  • Jung, Se-Gyo (Department of Applied Sciences, Korea Maritime University) ;
  • Bae, Seon-Min (Department of Applied Sciences, Korea Maritime University) ;
  • Jo, Dong-Wan (Department of Applied Sciences, Korea Maritime University) ;
  • Ok, Jin-Eun (Department of Applied Sciences, Korea Maritime University) ;
  • Kim, Kyung-Hwa (Department of Applied Sciences, Korea Maritime University) ;
  • Yang, Min (Department of Applied Sciences, Korea Maritime University) ;
  • Yi, Sam-Nyeong (Department of Applied Sciences, Korea Maritime University) ;
  • Ahn, Hyung-Soo (Department of Applied Sciences, Korea Maritime University) ;
  • Bae, Jong-Seong (Busan Branch, Korea Basic Science Institute) ;
  • Ha, Hong-Ju (CS solution Co., Ltd.)
  • 이강석 (한국해양대학교 응용과학과) ;
  • 전헌수 (한국해양대학교 응용과학과) ;
  • 이아름 (한국해양대학교 응용과학과) ;
  • 정세교 (한국해양대학교 응용과학과) ;
  • 배선민 (한국해양대학교 응용과학과) ;
  • 조동완 (한국해양대학교 응용과학과) ;
  • 옥진은 (한국해양대학교 응용과학과) ;
  • 김경화 (한국해양대학교 응용과학과) ;
  • 양민 (한국해양대학교 응용과학과) ;
  • 이삼녕 (한국해양대학교 응용과학과) ;
  • 안형수 (한국해양대학교 응용과학과) ;
  • 배종성 (한국기초과학연구센터 부산분소) ;
  • 하홍주 (CSsol(주))
  • Received : 2010.05.28
  • Accepted : 2010.06.09
  • Published : 2010.06.30

Abstract

The Cu$(In_{1-x}Ga_x)Se_2$ is the absorber material for thin film solar cell with high absorption coefficient of $1{\times}10^5cm^{-1}$. In the case of CIGS, the movable energy band gap from $CuInSe_2$ (1.00 eV) to $CuGaSe_2$ (1.68 eV) can be acquired while controlling Ga contain ratio. Generally, the co-evaporator method have used for development and fabrication of the CIGS absorption layer. However, this method should need many steps and lengthy deposition time with high temperature. For these reasons, in this paper, a new growth method of CIGS layer was attempted to hydride vapor transport (HVT) method. The CIGS mixed-source material reacted for HCl gas in the source zone was deposited on the substrate after transporting to growth zone. c-plane $Al_2O_3$ and undoped GaN were used as substrates for growth. The characteristics of grown samples were measured from SEM and EDS.

높은 광흡수 계수를$(1{\times}10^5cm^{-1})$ 가지는 CIGS는 Ga의 비율에 따라서 밴드갭을 조절할 수 있다는 장점을 지니고 있다. CIGS의 밴드갭은 Ga의 비율에 따라 $CuInSe_2$(Eg: 1.0 eV)에서 $CuGaSe_2$(Eg: 1.68 eV)까지의 범위에 존재하며, 태양전지에 서 이상적인 fill factor 모양을 가지도록 Ga의 비율을 높게 조성한다. CIGS 흡수층을 제작하는 방법에는 co-evaporator 방식이 가장 널리 사용되며 연구되고 있다. 이에 본 연구에서는 수평 형태의 hydride vapor transport (HVT)법을 고안하여 CIGS 나노 구조 및 에피성장을 시도하였다. HVT법은 $N_2$ 분위기에서 원료부의 CIGS 혼합물을 HCl과 반응시켜 염화물 기체상태로 변환 후 growth zone까지 이동하여 성장을 하는 방식이다. 성장기판은 c-$Al_2O_3$ 기판과 u-GaN을 사용하였다. 성장 후 field emission scanning electron microscopy(FE-SEM)과 energy dispersive spectrometer(EDS)를 이용하여 관찰하였다.

Keywords

References

  1. X. Wu and J.C. Keane, "16.5 %-efficient CdS/CdTe polycrystalline thin-film solar cell", Proceedings of 17th European Photovoltaic Solar Energy Conference, Munich, 22-26 (October 2001) 995.
  2. R. Wuerz, A. Eicke and M. Frankenfeld, "CIGS thin-film solar cells on steel substrates", Thin Solid Films 517, Issue 7 (2009) 2415. https://doi.org/10.1016/j.tsf.2008.11.016
  3. I. Repins and M. Contreras, "Characterization of 19.9 %-efficienct CIGS absorbers", IEEE Photovoltaics Specialists Conference Record (2008) 33.
  4. J. Kessler, M. Bodegard and J. Hedstrom, "New world record Cu (In,Ga) Se2 based mini-module: 16.6 %", Proceedings of 16th European Photovoltaic Solar Energy Conference, Glasgow (2000) 2057.
  5. F. Hergert, J. "A crystallographic description of experimentally identified formation reactions of Cu(In,Ga)$Se_{2}$", Solid State Chemistry 179, Issue 8 (2006) 2394. https://doi.org/10.1016/j.jssc.2006.04.033
  6. H. Tototzintle-Huitle and R. Baquero, "(0 0 1) Ideal-surface band structure for the series of Cu-based $ABC_{2}$ chalcopyrites", J. Phys. Chem. Solids. 68, Issue 1 (2007) 1. https://doi.org/10.1016/j.jpcs.2006.07.012
  7. J. Olejnicek and C.A. Kamler, "A non-vacuum process for preparing nanocrystalline $CuIn_{1-x}Ga_{x}Se_{2}$ materials involving an open-air solvothermal reaction", Sol. Energy Mater. 94, Issue 1 (2010) 8. https://doi.org/10.1016/j.solmat.2009.03.024
  8. L. Gladkikh and E. Rogacheva, "X-ray diffraction study of nonstoichiometry in Cu In Se2+d", Inorganic crystal structure database (ICSD), Web site: http://icsd.kisti.re.kr/icsd/icsd_chemistry.jsp, Coll. Code: 91864.
  9. L. Mandel, R.D. Tomlinson and M.J. Hampshire, "Crystal structure of Cu Ga $Se_{2}$", Inorganic crystal structure database (ICSD), Web site: http://icsd.kisti.re.kr/icsd/icsd_chemistry.jsp, Coll. Code: 41809.
  10. X.-L. Chen, Y.-C. Lan and J.-K. Liang, "Structure and heat capacity of wurtzite Ga N from 113 to 1073 K", Inorganic crystal structure database (ICSD), Web site: http://icsd.kisti.re.kr/icsd/icsd_chemistry.jsp, Coll. Code: 87830.
  11. S. Pillet, M. Souhassou and Lecomte, "Recovering experimental and theoretical electron densities in corundum using the multipolar model: IUCr multipole refinement project", Inorganic crystal structure database (ICSD), Web site: http://icsd.kisti.re.kr/icsd/icsd_chemistry.jsp, Coll. Code: 92628.