Browse > Article
http://dx.doi.org/10.4283/JKMS.2017.27.2.041

First Principles Calculations on Magnetism of CrPt3(001) Thin Films  

Jeong, Tae Sung (Department of Physics and EHSRC, University of Ulsan)
Jekal, Soyoung (Department of Physics and EHSRC, University of Ulsan)
Rhim, S.H. (Department of Physics and EHSRC, University of Ulsan)
Hong, S.C. (Department of Physics and EHSRC, University of Ulsan)
Abstract
Recent study shows that ordered alloy of $L1_2$ $XPt_3$ (M = V, Cr, Mn, Co, and Fe) exhibits various magnetic phases such as ferromagnetic-to-antiferromagnetic transition at the $MnPt_3$ surface. Moreover, it has been argued that $CrPt_3$, in particular, possess large magnetocrystalline anisotropy and Kerr rotation with possible violation of Hund's rule. As such, we extend our work to thickness dependence of the magnetic structure of $CrPt_3$ thin film using density functional theory. Magnetic ground state of the bulk $CrPt_3$ turns out to be ferromagnetic (FM), where other magnetic phases such as A-type (A-AF), C-type (C-AF), and G-type antiferromagnetic (G-AF) state have higher total energies than FM by 0.517, 0.591, and 0.183 eV, respectively, and magnetic moments of Cr in bulk are respectively 2.807 (FM), 2.805 (A-AF), 2.794 (C-AF) and $2.869_{{\mu}_B}$ (G-AF). We extend our study to $CrPt_3$(001) thin films with CrPt-and Pt-termination. The thickness and surface-termination dependences of magnetism are investigated for 3-9 monolayers (ML), where different magnetic phases from bulk emerge: C-AF for CrPt-terminated 3 ML and G-AF for Pt-terminated 5 ML have energy difference relative to FM by 8 and 54 meV, respectively. Furthermore, thickness- and surface-termination-dependent magnetocrystalline anisotropies of the $CrPt_3$(001) films are discussed.
Keywords
magnetocrystalline anisotropy; first principle calculation; magnetism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. L. Makarova, B. Sundqvist, R. Hohne, P. Esquinazi, Y. Kopelevich, P. Scharff, V. A. Davydov, L. S. Kash-evarova, and A. V. Rakhmanina, Nature (London) 413, 716 (2001).   DOI
2 W. S. Yun and S. C. Hong, J. Korean Phys. Soc. 53, 384 (2008).   DOI
3 M.-J. Woo and S. C. Hong, J. Korean Phys. Soc. 48, 1405 (2006).
4 J. J. Palacios and J. Fernandex-Rossier, Phys. Rev. B 77, 195428 (2008).   DOI
5 S. C. Hong, J. I. Lee, and R. Wu, Phys. Rev. B 75, 172402 (2007).   DOI
6 W. Kim, S. C. Hong, J. Seo, S.-J. Oh, H. G. Min, and J.-S. Kim, Phys. Rev. B 70, 174453 (2004).   DOI
7 W. Kim, S.-J. Oh, J. Seo, H. G. Min, S. C. Hong, and J.-S. Kim, Phys. Rev. B 65, 205407 (2002).   DOI
8 T. D. Leonhardt, Y. Chen, M. Rao, D. E. Laughlin, D. N. Lambeth, and M. H. Kryder, J. Appl. Phys. 85, 4307 (1999).   DOI
9 M. Maret, M. Albrecht, J. Kohler, R. Poinsot, C. Ulhaq-Bouillet, J. M. Tonnerre, J. F. Berar, and E. Bucher, J. Magn. Magn. Mater. 218, 151 (2000).   DOI
10 M. Vergohl and J. Schoenes, J. Magn. Soc. Japan 20, S1, 141 (1996).   DOI
11 J. Cho, M. Park, H.-S. Kim, T. Kato, S. Iwata, and S. Tsunashima, J. Appl. Phys. 86, 3149 (1999).   DOI
12 G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).   DOI
13 G. Kresse and J. Furthmüller, Comput. Mater. Sci. 5, 15 (1996).
14 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
15 P. E. Blochl, Phys. Rev. B 50, 17953 (1994).   DOI
16 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).   DOI
17 I. Galanakis, P. M. Oppeneer, P. Ravindran, L. Nord-strom, P. James, M. Alouani, Dreysse, and O. Eriksson, Phys. Rev. B 63, 172405 (2001).   DOI