DOI QR코드

DOI QR Code

UV-cured Polymer Solid Electrolyte Reinforced using a Ceramic-Polymer Composite Layer for Stable Solid-State Li Metal Batteries

  • Hye Min Choi (Renewable Energy Institute, Korea Institute of Energy Research) ;
  • Su Jin Jun (Renewable Energy Institute, Korea Institute of Energy Research) ;
  • Jinhong Lee (Renewable Energy Institute, Korea Institute of Energy Research) ;
  • Myung-Hyun Ryu (Renewable Energy Institute, Korea Institute of Energy Research) ;
  • Hyeyoung Shin (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Kyu-Nam Jung (Renewable Energy Institute, Korea Institute of Energy Research)
  • Received : 2022.10.11
  • Accepted : 2022.10.16
  • Published : 2023.02.28

Abstract

In recent years, solid-state Li metal batteries (SSLBs) have attracted significant attention as the next-generation batteries with high energy and power densities. However, uncontrolled dendrite growth and the resulting pulverization of Li during repeated plating/stripping processes must be addressed for practical applications. Herein, we report a plastic-crystal-based polymer/ceramic composite solid electrolyte (PCCE) to resolve these issues. To fabricate the one-side ceramic-incorporated PCCE (CI-PCCE) film, a mixed precursor solution comprising plastic-crystal-based polymer (succinonitrile, SN) with garnet-structured ceramic (Li7La3Zr2O12, LLZO) particles was infused into a thin cellulose membrane, which was used as a mechanical framework, and subsequently solidified by using UV-irradiation. The CI-PCCE exhibited good flexibility and a high room-temperature ionic conductivity of over 10-3 S cm-1. The Li symmetric cell assembled with CI-PCCE provided enhanced durability against Li dendrite penetration through the solid electrolyte (SE) layer than those with LLZO-free PCCEs and exhibited long-term cycling stability (over 200 h) for Li plating/stripping. The enhanced Li+ transference number and lower interfacial resistance of CI-PCCE indicate that the ceramic-polymer composite layer in contact with the Li anode enabled the uniform distribution of Li+ flux at the interface between the Li metal and CI-PCCE, thereby promoting uniform Li plating/stripping. Consequently, the Li//LiFePO4 (LFP) full cell constructed with CI-PCCE demonstrated superior rate capability (~120 mAh g-1 at 2 C) and stable cycle performance (80% after 100 cycles) than those with ceramic-free PCCE.

Keywords

Acknowledgement

This research was supported by the Korea Institute of Energy Research (KIER, Project No. C2-2465) and Chungnam National University.

References

  1. J. B. Goodenough and K.-S. Park, J. Am. Chem. Soc., 2013, 135(4), 1167-1176. https://doi.org/10.1021/ja3091438
  2. A. Manthiram, J. C. Knight, S.-T. Myung, S.-M. Oh, and Y.-K. Sun, Adv. Energy Mater., 2016, 6(1), 1501010.
  3. M. Li, J. Lu, Z. Chen, and K. Amine, Adv. Mater., 2018, 30(33), 1800561.
  4. H. Kim, D. I. Kim, and W.-S. Yoon, J. Electrochem. Sci. Technol., 2022, 13(1), 32-53. https://doi.org/10.33961/jecst.2021.00920
  5. J. H. Yang, S. J. Hwang, S. K. Chun, and K. J. Kim, J. Electrochem. Sci. Technol., 2022, 13(2), 208-212. https://doi.org/10.33961/jecst.2021.00899
  6. T. M. Bandhauer, S. Garimella, and T. F. Fuller, J. Electrochem. Soc., 2011, 158, R1.
  7. S. Hess, M. Wohlfahrt-Mehrens, and M. Wachtler, J. Electrochem. Soc., 2015, 162, A3084-A3097. https://doi.org/10.1149/2.0121502jes
  8. K. Liu, Y. Liu, D. Lin, A. Pei, and Y. Cui, Sci. Adv., 2018, 4(6), eaas9820.
  9. Q. Wang, L. Jiang, Y. Yu, and J. Sun, Nano Energy, 2019, 55, 93-144. https://doi.org/10.1016/j.nanoen.2018.10.035
  10. J. C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, and Y. Shao-Horn, Chem. Rev., 2016, 116(1), 140-162. https://doi.org/10.1021/acs.chemrev.5b00563
  11. C. Sun, J. Liu, Y. Gong, D. P. Wilkinson, and J. Zhang, Nano Energy, 2017, 33, 363-386. https://doi.org/10.1016/j.nanoen.2017.01.028
  12. Z. Zhang, Y. Shao, B. Lotsch, Y.-S. Hu, H. Li, J. Janek, L. F. Nazar, C.-W. Nan, J. Maier, M. Armand, and L. Chen, Energy Environ. Sci., 2018, 11, 1945-1976. https://doi.org/10.1039/C8EE01053F
  13. T. Famprikis, P. Canepa, J. A. Dawson, M. S. Islam, and C. Masquelier, Nat. Mater., 2019, 18, 1278-1291. https://doi.org/10.1038/s41563-019-0431-3
  14. J. Liang, J. Luo, Q. Sun, X. Yang, R. Li, and X. Sun, Energy Storage Mater., 2019, 21, 308-334. https://doi.org/10.1016/j.ensm.2019.06.021
  15. Q. Zhao, S. Stalin, C.-Z. Zhao, and L. A. Archer, Nat. Rev. Mat., 2020, 5, 229-252. https://doi.org/10.1038/s41578-019-0165-5
  16. R. Chen, Q. Li, X. Yu, L. Chen, and H. Li, Chem. Rev., 2020, 120(4), 6820-6877. https://doi.org/10.1021/acs.chemrev.9b00268
  17. J. Wu, L. Shen, Z. Zhang, G. Liu, Z. Wang, D. Zhou, H. Wan, X. Xu, and X. Yao, Electrochem. Energ. Rev., 2021, 4, 101-135. https://doi.org/10.1007/s41918-020-00081-4
  18. Z. Wang, L. Shen, S. Deng, P. Cui, and X. Yao, Adv. Mater., 2021, 33(25), 2100353.
  19. Z. Zhang, L. Wu, D. Zhou, W. Weng, and X. Yao, Nano Lett., 2021, 21(12), 5233-5239. https://doi.org/10.1021/acs.nanolett.1c01344
  20. J. Lee, K. Heo, Y.-W. Song, D. Hwang, M.-Y. Kim, H. Jeong, D.-C. Shin, and J. Lim, J. Electrochem. Sci. Technol., 2022, 13(2), 199-207. https://doi.org/10.33961/jecst.2021.00864
  21. X. Yu and A. Manthiram, Energy Environ. Sci., 2018, 11, 527-543. https://doi.org/10.1039/C7EE02555F
  22. K. Nie, Y. Hong, J. Qiu, Q. Li, X. Yu, H. Li, and L. Chen, Front. Chem., 2018, 6, 616.
  23. M. Du, K. Liao, Q. Lu, and Z. Shao, Energy Environ. Sci., 2019, 12, 1780-1804. https://doi.org/10.1039/C9EE00515C
  24. K.-N. Jung, H.-S. Shin, M.-S. Park, and J.-W. Lee, ChemElectroChem, 2019, 6(15), 3842-3859. https://doi.org/10.1002/celc.201900736
  25. H.-D. Lim, J.-H. Park, H.-J. Shin, J. Jeong, J. T. Kim, K.-W. Nam, H.-G. Jung, and K. Y. Chung, Energy Storage Mater., 2020, 25, 224-250. https://doi.org/10.1016/j.ensm.2019.10.011
  26. Y. Xiao, Y. Wang, S.-H. Bo, J. C. Kim, L.J. Miara, and G. Ceder, Nat. Rev. Mater., 2020, 5, 105-126. https://doi.org/10.1038/s41578-019-0157-5
  27. D. R. MacFarlane, J. Huang, and M. Forsyth, Nature, 1999, 402, 792-794. https://doi.org/10.1038/45514
  28. S. Long, D. R. MacFarlane, and M. Forsyth, Solid State Ion., 2003, 161(1-2), 105-112. https://doi.org/10.1016/S0167-2738(03)00208-X
  29. P.-J. Alarco, Y. Abu-Lebdeh, A. Abouimrane, and M. Armand, Nature Mater., 2004, 3, 476-481. https://doi.org/10.1038/nmat1158
  30. S. Das, S. J. Prathapa, P. V. Menezes, T. N. G. Row, and A. J. Bhattacharyya, J. Phys. Chem. B, 2009, 113(15), 5025-5031. https://doi.org/10.1021/jp809465u
  31. K.-H. Choi, S.-J. Cho, S.-H. Kim, Y. H. Kwon, J. Y. Kim, and S.-Y. Lee, Adv. Funct. Mater., 2014, 24(1), 44-52. https://doi.org/10.1002/adfm.201301345
  32. S.-H. Lee, K.-H. Choi, S.-J. Cho, J.-S. Park, K. Y. Cho, C. K. Lee, S. B. Lee, J. K. Shim, and S.-Y. Lee, J. Mater. Chem. A, 2014, 2, 10854-10861. https://doi.org/10.1039/C4TA00494A
  33. K. Liu, F. Ding, J. Liu, Q. Zhang, X. Liu, J. Zhang, and Q. Xu, ACS Appl. Mater. Interfaces, 2016, 8(36), 23668-23675. https://doi.org/10.1021/acsami.6b05882
  34. Z. Wei, S. Chen, J. Wang, Z. Wang, Z. Zhang, X. Yao, Y. Deng, and X. Xu, J. Mater. Chem. A, 2018, 6, 13438-13447. https://doi.org/10.1039/C8TA04477E
  35. H.-S. Shin, W. Jeong, M.-H. Ryu, S. W. Lee, K.-N. Jung, and J.-W. Lee, Chem. Eng. J., 2022, 433, 133753.
  36. Z. Li, W.-X. Sha, and X. Guo, ACS Appl. Mater. Interfaces, 2019, 11(30), 26920-26927. https://doi.org/10.1021/acsami.9b07830
  37. H. Huo, X. Li, Y. Chen, J. Liang, S. Deng, X. Gao, K. Doyle-Davis, R. Li, X. Guo, Y. Shen, C.-W. Nam, and X. Sun, Energy Stor. Mater., 2020, 29, 361-366. https://doi.org/10.1016/j.ensm.2019.12.022
  38. B. Yuan, B. Zhao, Z. Cong, Z. Cheng, Q. Wang, Y. Lu, and X. Han, Polymers, 2021, 13(21), 3622.
  39. E.-S. Won, H. R. Shin, W. Jeong, J. Yun, and J.-W. Lee, Electrochim. Acta, 2022, 418, 140374. https://doi.org/10.1016/j.electacta.2022.140374
  40. F. Croce, M. L. Focarete, J. Hassoun, I. Meschini, and B. Scrosati, Energy Environ. Sci., 2011, 4, 921-927. https://doi.org/10.1039/c0ee00348d
  41. D. Zhou, Y.-B. He, R. Liu, M. Liu, H. Du, B. Li, Q. Cai, Q.-H. Yang, and F. Kang, Adv. Energy Mater., 2015, 5(15), 1500353.
  42. H. Wu, D. Zhuo, D. Kong, and Y. Cui, Nat. Commun., 2014, 5, 5193.
  43. P. G. Bruce, J. Evans, and C. A. Vincent, Solid State Ion., 1988, 28-30, 918-922. https://doi.org/10.1016/0167-2738(88)90304-9
  44. L. Chen, W. Li, L. Z. Fan, C. W. Nan, and Q. Zhang, Adv. Funct. Mater., 2019, 29(28), 1901047. https://doi.org/10.1002/adfm.201901047
  45. T. Krauskopf, B. Mogwitz, C. Rosenbach, W. G. Zeier, and J. Janek, Adv. Energy Mater., 2019, 9(44), 1902568.