Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.11.845

Fabrication and Evaluation Properties of Titanium Sintered-body for a Sputtering Target by Spark Plasma Sintering Process  

Lee, Seung-Min (Korea Institute of Industrial Technology (KITECH), Automotive Components Center)
Park, Hyun-Kuk (Korea Institute of Industrial Technology (KITECH), Automotive Components Center)
Youn, Hee-Jun (Korea Institute of Industrial Technology (KITECH), Automotive Components Center)
Yang, Jun-Mo (Measurement & Analysis Team, National Nanofab Center)
Woo, Kee-Do (School of Advanced Materials Engineering, Chunbuk National University)
Oh, Ik-Hyun (Korea Institute of Industrial Technology (KITECH), Automotive Components Center)
Publication Information
Korean Journal of Metals and Materials / v.49, no.11, 2011 , pp. 845-852 More about this Journal
Abstract
The Spark Plasma Sintering(SPS) method offers a means of fabricating a sintered-body having high density without grain growth through short sintering time and a one-step process. A titanium compact having high density and purity was fabricated by the SPS process. It can be used to fabricate a Ti sputtering target with controlled parameters such as sintering temperature, heating rate, and pressure to establish the optimized processing conditions. The compact/target(?) has a diameter of ${\Phi}150{\times}6.35mm$. The density, purity, phase transformation, and microstructure of the Ti compact were analyzed by Archimedes, ICP, XRD and FE-SEM. A Ti thin-film fabricated on a $Si/SiO_2$ substrate by a sputtering device (SRN-100) was analyzed by XRD, TEM, and SIMS. Density and grain size were up to 99% and below $40{\mu}m$, respectively. The specific resistivity of the optimized Ti target was $8.63{\times}10^{-6}{\Omega}{\cdot}cm$.
Keywords
spark plasma sintering process; Ti; temperature gradient; rapid sintering; sputtering target;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 M. J. Donachie. Jr., Titanium and Titanium Alloys Source Book. p. 3, (1982).
2 R. Boyer, G. Welsch and E. W. collings, Mater. Properties Handbook : Titanium Alloys, p. 3 (1994).
3 W. F. Smith, Struct. and Proper. of Eng. Alloys, p. 411 (1981).
4 Z. Liu and G. Welsch, Met. Trans. A19, 1121 (1988).
5 M. J. Blackburn and J. C. Williams, Trans. ASM 62, 398 (1969).
6 F. Hoppner, Metallograp. 11, 1299 (1978).
7 W. A. Baeslack III, D. W. Becker, and F. H. Froes, J. of Metals 46, 36 (1984).
8 G. Welsch and W. Bunk, Metall. Trans. 13A, 890 (1982).
9 B. B. Rath, R. J. Lederich, C. F. Yolton, and F. H. Froes, Metall. Trans. 10A, 1013 (1979).
10 H. C. Kim, H. K. Park, I. K. Jung, I. Y. Ko, and I. J. Shon, Cermics Int. 34, 1419 (2008).   DOI   ScienceOn
11 Jia K, Fischer TE, and Gallois G., Nanostruct Mater. 10, 875 (1998).   DOI   ScienceOn
12 H. C. Kim, Ph D. Thesis (in Korean), p. 44-48 Chonbuk University Chonbuk (2005).
13 J. Y. Kim, J. K. Kim, S. C. Han, H. K. Kim, and J. M. Lee, Kor. J. Met. Mater. 48, 565 (2010).