DOI QR코드

DOI QR Code

Effect of Anode Voltage on Diamond-like Carbon Thin Film Using Linear Ion Source

Linear Ion Source를 이용한 Anode Voltage 변화에 따른 DLC 박막특성

  • Kim, Wang-Ryeol (Department of Materials Science and Engineering, Pusan National University) ;
  • Jung, Uoo-Chang (Dongnam Technology Service Division, Korea Institute of Industrial Technology) ;
  • Jo, Hyung-Ho (Dongnam Technology Service Division, Korea Institute of Industrial Technology) ;
  • Park, Min-Suk (J&L Tech Co., Ltd.) ;
  • Chung, Won-Sub (Department of Materials Science and Engineering, Pusan National University)
  • 김왕렬 (부산대학교 공과대학 재료공학부) ;
  • 정우창 (한국생산기술연구원 동남권기술지원본부) ;
  • 조형호 (한국생산기술연구원 동남권기술지원본부) ;
  • 박민석 ((주)제이엔엘 테크) ;
  • 정원섭 (부산대학교 공과대학 재료공학부)
  • Published : 2009.08.31

Abstract

Diamond-like carbon(DLC) films were deposited by linear ion source(LIS)-physical vapor deposition method changing the anode voltages from 800 V to 1800 V, and characteristics of the films were investigated using residual stress tester, nano-indentation, micro raman spectroscopy, scratch tester and Field Emission Scanning Electron Microscope(FE-SEM). The results showed that the residual stress and hardness increased with increasing the ion energy up to anode voltage of 1400 V. It was also found that the content of $SP^3$ carbon increased with increasing the anode voltage $SP^3/SP^2$ ratio through investigation of $SP^3/SP^2$ ratio by the micro-raman analysis. From these results, it can be concluded that the physical properties of DLC films such as residual stress and hardness are increased with increasing the anode voltage. These results can be explained that 3-dimensional cross-links between carbon atoms and Dangling bond are enhanced and the internal compressive stress also increased with increasing the anode voltage. The optimal anode voltage is considered to be around 1400 V in these experimental conditions.

Keywords

References

  1. J. Robertson, Mater. Sci. Eng., R 37 (2002) 129
  2. J. Robertson, Surface and Coating Technology, 50 (1992) 185 https://doi.org/10.1016/0257-8972(92)90001-Q
  3. K.-R. Lee, K. Y. Eun, Bull. of the Korean Inst. of Met. & Mater., 6(4) (1993) 345
  4. K.-R. Lee, K. Y. Eun, I. Y. Kim, J. R. Kim, Thin Solid Films, 377-378 (2000) 261 https://doi.org/10.1016/S0040-6090(00)01429-2
  5. C. K. Lee, Diamond & Related Materials, 17 (2008) 306 https://doi.org/10.1016/j.diamond.2007.12.047
  6. D. Sheeja, B. K. Tay, K. W. Leong, C. H. Lee, Diamond & Related Materials, 11 (2002) 1643 https://doi.org/10.1016/S0925-9635(02)00109-7
  7. R. K. Singh, Z. H. Xie, A. Bendavid, P. J. Martin, P. Munroe, M. Hoffman, Diamond & Related Materials, 17 (2008) 975 https://doi.org/10.1016/j.diamond.2008.02.037
  8. D. Sheeja, B. K. Tay, S. M. Krishnan, L. N. Nung, Diamond & Related Materials, 12 (2003) 1389 https://doi.org/10.1016/S0925-9635(03)00165-1
  9. J. Veverkova, S. V. Hainsworth Wear, 264 (2008) 518 https://doi.org/10.1016/j.wear.2007.04.003
  10. J. C. Angus, P. Koidl, S. Domitz, Plasma Deposited Thin Films, CRC Press, Boca Raton, FL (1986) 89
  11. H. Tsai, D. B. Bogy, J. Vac. Sci. Technol., A5 (1987) 3287
  12. D. Nir, Thin Solid Films, 112 (1984) 41 https://doi.org/10.1016/0040-6090(84)90500-5
  13. M. David, R. Padiyath, S. V. Badu AIChE J., 37 (1991) 367 https://doi.org/10.1002/aic.690370307
  14. K. Enke, Thin Solid Films, 80 (1981) 227 https://doi.org/10.1016/0040-6090(81)90226-1
  15. J. W. Zou, K. Schmidt, K. Reichelt, B. Dischler, J. Appl. Phys., 67 (1990) 487 https://doi.org/10.1063/1.345230
  16. Y. H. Son, W. C. Jung, J. I. Jeong, N. G. Park, I. S. Kim, K. H. Kim, I. H. Bae, J. Kor. Vac. Soc., 9 (2000) 328
  17. J. Robertson, Diamond & Related Materials, 2 (1993) 984 https://doi.org/10.1016/0925-9635(93)90262-Z
  18. C. S. Lee, J.-K. Shin, J. K. Kim, K.-R. Lee, K.-H. Yoon, J. Kor. Vac. Soc., 11 (2002) 8