• Title/Summary/Keyword: Euler Society

Search Result 1,097, Processing Time 0.056 seconds

A Flowfield Analysis Around an Airfoil by Using the Euler Equations (Euler 방정식을 사용한 익형 주위에서의 유동장 해석)

  • Kim M. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.186-191
    • /
    • 1999
  • An Euler solver is developed to predict accurate aerodynamic data such as lift coefficient, drag coefficient, and moment coefficient. The conservation law form of the compressible Euler equations are used in the generalized curvilinear coordinates system. The Euler solver uses a finite volume method and the second order Roe's flux difference splitting scheme with min-mod flux limiter to calculate the fluxes accurately. An implicit scheme which includes the boundary conditions is implemented to accelerate the convergence rate. The multi-block grid is integrated into the flow solver for complex geometry. The flowfields are analyzed around NACA 0012 airfoil in the cases of $M_{\infty}=0.75,\;\alpha=2.0\;and\;M_{\infty}=0.80,\;\alpha=1.25$. The numerical results are compared with other numerical results from the literature. The final goal of this research is to prepare a robust and an efficient Navier-Stokes solver eventually.

  • PDF

GENERALIZED STABILITY OF EULER-LAGRANGE TYPE QUADRATIC MAPPINGS

  • Jun, Kil-Woung;Oh, Jeong-Ha
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.535-542
    • /
    • 2007
  • In this paper, we investigate the generalized Hyers-Ulam{Rasssias stability of the following Euler-Lagrange type quadratic functional equation $$f(ax+by+cz)+f(ax+by-cz)+f(ax-by+cz)+f(ax-by-cz)=4a^2f(x)+4b^2f(y)+4c^2f(z)$$.

  • PDF

GLOBAL EXISTENCE AND STABILITY FOR EULER-BERNOULLI BEAM EQUATION WITH MEMORY CONDITION AT THE BOUNDARY

  • Park, Jong-Yeoul;Kim, Joung-Ae
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.6
    • /
    • pp.1137-1152
    • /
    • 2005
  • In this article we prove the existence of the solution to the mixed problem for Euler-Bernoulli beam equation with memory condition at the boundary and we study the asymptotic behavior of the corresponding solutions. We proved that the energy decay with the same rate of decay of the relaxation function, that is, the energy decays exponentially when the relaxation function decay exponentially and polynomially when the relaxation function decay polynomially.

GLOBAL EXISTENCE FOR A PARTIALLY LINEAR 3D EULER FLOW

  • Kim, Namkwon;Lkhagvasuren, Bataa
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.211-224
    • /
    • 2018
  • We consider a certain three dimensional Euler flow with infinite energy, which is sometimes called the columnar or two and half dimensional flow. We prove the global smoothness of such flow in ${\mathbb{R}}^3$ when the initial data is in some Sobolev or Besov spaces and ${\partial}_3u_3$ is nonnegative.

The Transfer Matrix Method for Three-Dimensional Vibration Analysis of Crank Shaft (전달행렬법을 사용한 크랭크축의 3차원 진동해석)

  • 이정윤;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.152-159
    • /
    • 1997
  • This paper presents a vibration analysis method of crank shaft of six cylinder internal combustion engine. For simple analysis journal, pin and arm parts were assumed to have uniform section. Transfer Matrix Method was used, considering branched part and coordinate transformation part. Natural frequencies, modeshapes and transfer functions of crank shaft were investigated based upon the Euler beam theory: It was shown that the calculated natural frequencies, modeshapes agree well with the existing paper results.

  • PDF

Nilpotent action by an elementary amenable group and euler characteristic

  • Lee, Jong-Bum;Park, Cnah-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.253-258
    • /
    • 1996
  • Let X be a finite connected CW-complex, $\Gamma = \pi_1(X)$ its fundamental group, $\tilde{X}$ its universal covering space. Then $\Gamma$ acts on $\tilde{X}$ by covering transformations and on the homology group $H_*(\tilde{X})$. In this note we establish the following vanishing result for the Euler characteristic $x(X)$ of X.

  • PDF

A MEMORY TYPE BOUNDARY STABILIZATION FOR AN EULER-BERNOULLI BEAM UNDER BOUNDARY OUTPUT FEEDBACK CONTROL

  • Kang, Yong-Han;Park, Jong-Yeoul;Kim, Jung-Ae
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.947-964
    • /
    • 2012
  • In this paper, the memory type boundary stabilization for an Euler-Bernoulli beam with one end fixed and control at the other end is considered. We prove the existence of solutions using the Galerkin method and then investigate the exponential stability of solutions by using multiplier technique.

SOME RESULTS ON PARAMETRIC EULER SUMS

  • Xu, Ce
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1255-1280
    • /
    • 2017
  • In this paper we present a new family of identities for parametric Euler sums which generalize a result of David Borwein et al. [2]. We then apply it to obtain a family of identities relating quadratic and cubic sums to linear sums and zeta values. Furthermore, we also evaluate several other series involving harmonic numbers and alternating harmonic numbers, and give explicit formulas.

CRITERION FOR BLOW-UP IN THE EULER EQUATIONS VIA CERTAIN PHYSICAL QUANTITIES

  • Kim, Namkwon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.4
    • /
    • pp.243-248
    • /
    • 2012
  • We consider the (possible) finite time blow-up of the smooth solutions of the 3D incompressible Euler equations in a smooth domain or in $R^3$. We derive blow-up criteria in terms of $L^{\infty}$ of the partial component of Hessian of the pressure together with partial component of the vorticity.